The Role of Epigenetic Mechanism in Pathogenesis of the Osteoarthritis
DOI:
https://doi.org/10.54393/pbmj.v5i3.132Keywords:
Osteoarthritis, Epigenetic mechanisms, DNA methylation, Histone modifications, Non-coding RNAsAbstract
Osteoarthritis is a multifactorial disease characterized by the degeneration of articulating synovial joints. Osteoarthritis is more prevalent in women. It caused by ageing, pathophysiological situations, ecological factors, hormonal, environmental, and genetic factors. Epigenetic is “in addition to genetics. Epigenetic mechanisms such as histone modifications, DNA methylation and non-coding RNA are important parameters in controlling quantity, location and timing of gene expression. The treatment available is only painkillers and anti-inflammatory. In this review, we discuss how these epigenetic mechanisms are involved in the pathogenesis of osteoarthritis and find possible therapeutic targets in the prevention of disease. Epigenetic mechanisms regulate gene expression either by disturbing gene transcription or by acting post-transcription. In mammals DNA methylation is occur at Cp G dinucleotides at the outside of CpG. However cytosine is specifically methylated to 5-methylcytosine, later it can be transformed to 5-hydroxymethylcytosine that plays a role in epigenetics. DNA methylation is mediated by DNA methyl-transferases (DNMT1,-3a, -3b). DNA methylation occur at CpGdinucleotides that clustered close to gene promoters and caused suppression of genes expression. Methylation modifications on promoter regions of these genes (MMP3, MMP9, MMP13 and ADAMTS-4) have been reported. In the promoter site of such enzymes the entire proportion of non-methylated sites in OA cartilage is increased. Histone modifications modify the chromatin assembly. Histone modifications include acetylation, phosphorylation, methylation and ubiquitination. Histone acetylation and deacetylation play a role in the pathophysiology of OA by disturbing chondrocyte anabolic and catabolic processes. Histone acetylation is modulated by histone acetyltransferases (HATs) and deacetylation by histone deacetylases. HDACs (HDAC1, HDAC2, and HDAC7) increase cartilage demolition. microRNAs (miRNAs) are single stranded RNA. miRNAs involved in the pathogenesis of OA. After binding to target sequence, miRNAs silence genes either by cleavage of their respective target mRNA or by preventing gene translation. Many miRNA (miR-140, miR-9 etc) and some other RNAs such as piRNAs, snoRNAs and lncRNAs have role in OA progression. The deletion of a single miRNA, miR-140, has a clear developmental phenotype with an early onset OA. To date, epigenetic functions of lncRNAs in response to inflammation and in potentially regulating chondrocyte homeostasis are completely unknown.
References
Abd Elazeem, M. I., Abdelaleem, E. A., & Mohamed, R. A. (2017). Genetic influence of growth and differentiation factor 5 gene polymorphism (+104T/C) on the development of knee osteoarthritis and its association with disease severity. European Journal of Rheumatology, 4(2), 98–103. https://doi.org/10.5152/eurjrheum.2017.160093
Apinun, J., Sengprasert, P., Yuktanandana, P., Ngarmukos, S., Tanavalee, A., & Reantragoon, R. (2016). Immune Mediators in Osteoarthritis : Infrapatellar Fat Pad-Infiltrating CD8 + T Cells Are Increased in Osteoarthritic Patients with Higher Clinical Radiographic Grading, 2016.
Barter, M. J., Bui, C., & Young, D. A. (2012). Epigenetic mechanisms in cartilage and osteoarthritis: DNA methylation, histone modifications and microRNAs. Osteoarthritis and Cartilage, 20(5), 339–349. https://doi.org/10.1016/j.joca.2011.12.012
Barter, M. J., & Young, D. A. (2013). Epigenetic mechanisms and non-coding RNAs in osteoarthritis. Current Rheumatology Reports, 15(9), 353. https://doi.org/10.1007/s11926-013-0353-z
Cai, D., Yin, S., Yang, J., Jiang, Q., & Cao, W. (2015). Histone deacetylase inhibition activates Nrf2 and protects against osteoarthritis. Arthritis Research & Therapy, 1–11. https://doi.org/10.1186/s13075-015-0774-3
Cheleschi, S., De Palma, A., Pecorelli, A., Pascarelli, N. A., Valacchi, G., Belmonte, G., … Fioravanti, A. (2017). Hydrostatic pressure regulates MicroRNA expression levels in osteoarthritic chondrocyte cultures via the Wnt/β-catenin pathway. International Journal of Molecular Sciences, 18(1). https://doi.org/10.3390/ijms18010133
Chen, D., Shen, J., & Hui, T. (2015). Epigenetic and microRNA regulation during osteoarthritis development. F1000Research. https://doi.org/10.12688/f1000research.6548.1
Chen, H., & Tian, Y. (2016). MiR-15a-5p regulates viability and matrix degradation of human osteoarthritis chondrocytes via targeting VEGFA. BioScience Trends, 10(6), 482–488. https://doi.org/10.5582/bst.2016.01187
Chen, W., Sheng, P., Huang, Z., Meng, F., Kang, Y., & Huang, G. (2016). MicroRNA-381 Regulates Chondrocyte Hypertrophy by Inhibiting Histone Deacetylase 4 Expression, 13. https://doi.org/10.3390/ijms17091377
D’Adamo, S., Cetrullo, S., Guidotti, S., Borzì, R. M., & Flamigni, F. (2017). Hydroxytyrosol modulates the levels of microRNA-9 and its target sirtuin-1 thereby counteracting oxidative stress-induced chondrocyte death. Osteoarthritis and Cartilage, 25(4), 600–610. https://doi.org/10.1016/j.joca.2016.11.014
Liang, Z. J., Zhuang, H., Wang, G. X., Li, Z., Zhang, H. T., Yu, T. Q., & Zhang, B. D. (2012). MiRNA-140 is a negative feedback regulator of MMP-13 in IL-1β-stimulated human articular chondrocyte C28/I2 cells. Inflammation Research, 61(5), 503–509. https://doi.org/10.1007/s00011-012-0438-6
Loughlin, J. (2015). Genetic contribution to osteoarthritis development : current state of evidence, 27(3), 284–288. https://doi.org/10.1097/BOR.0000000000000171
Mao, G., Zhang, Z., Huang, Z., Chen, W., Huang, G., Meng, F., … Kang, Y. (2017). MicroRNA-92a-3p regulates the expression of cartilage-specific genes by directly targeting histone deacetylase 2 in chondrogenesis and degradation. Osteoarthritis and Cartilage, 25(4), 521–532. https://doi.org/10.1016/j.joca.2016.11.006
Musumeci, G., Aiello, F. C., & Szychlinska, M. A. (2015). Osteoarthritis in the XXIst Century : Risk Factors and Behaviours that Influence Disease Onset and Progression, 6093–6112. https://doi.org/10.3390/ijms16036093
Ntoumou, E., Tzetis, M., Braoudaki, M., Lambrou, G., Poulou, M., Malizos, K., … Tsezou, A. (2017). Serum microRNA array analysis identifies miR-140-3p, miR-33b-3p and miR-671-3p as potential osteoarthritis biomarkers involved in metabolic processes. Clinical Epigenetics, 9(1), 1–15. https://doi.org/10.1186/s13148-017-0428-1
Nugent, M. (2016). MicroRNAs: Exploring new horizons in osteoarthritis. Osteoarthritis and Cartilage, 24(4), 573–580. https://doi.org/10.1016/j.joca.2015.10.018
Paper, S. B., Oa, W., Burden, G., Study, D., States, E. U. M., & Nations, U. (2010). 6.12 Osteoarthritis, 12, 6–8.
Ramos, Y. F. M., & Meulenbelt, I. (2017a). The role of epigenetics in osteoarthritis : current perspective, 119–129. https://doi.org/10.1097/BOR.0000000000000355
Ramos, Y. F. M., & Meulenbelt, I. (2017b). The role of epigenetics in osteoarthritis: Current perspective. Current Opinion in Rheumatology, 29(1), 119–129. https://doi.org/10.1097/BOR.0000000000000355
Reynard, L. N. (2017). Analysis of genetics and DNA methylation in osteoarthritis: What have we learnt about the disease? Seminars in Cell and Developmental Biology, 62, 57–66. https://doi.org/10.1016/j.semcdb.2016.04.017
Samanta, S., Rajasingh, S., Cao, T., Dawn, B., & Rajasingh, J. (2017). Epigenetic dysfunctional diseases and therapy for infection and inflammation. Biochimica et Biophysica Acta - Molecular Basis of Disease, 1863(2), 518–528. https://doi.org/10.1016/j.bbadis.2016.11.030
Sondag, G. R., & Haqqi, T. M. (2016). The Role of MicroRNAs and Their Targets in Osteoarthritis. Current Rheumatology Reports, 18(8), 1–23. https://doi.org/10.1007/s11926-016-0604-x
Song, J., Kim, D., Lee, C. H., Lee, M. S., Chun, C. H., & Jin, E. J. (2013). MicroRNA-488 regulates zinc transporter SLC39A8/ZIP8 during pathogenesis of osteoarthritis. Journal of Biomedical Science, 20(1), 2–7. https://doi.org/10.1186/1423-0127-20-31
Szychlinska, M. A., Stoddart, M. J., & Amora, U. D. (2017). Mesenchymal Stem Cell-Based Cartilage Regeneration Approach and Cell Senescence :, 23(6), 529–540. https://doi.org/10.1089/ten.teb.2017.0083
Takahashi, A., de Andrés, M. C., Hashimoto, K., Itoi, E., Otero, M., Goldring, M. B., & Oreffo, R. O. C. (2017). DNA methylation of the RUNX2 P1 promoter mediates MMP13 transcription in chondrocytes. Scientific Reports, 7(1), 7771. https://doi.org/10.1038/s41598-017-08418-8
Wang, J., Chen, L., Jin, S., Lin, J., Zheng, H., Zhang, H., … Li, Q. (2016). MiR-98 promotes chondrocyte apoptosis by decreasing Bcl-2 expression in a rat model of osteoarthritis. Acta Biochimica et Biophysica Sinica, 48(10), 923–929. https://doi.org/10.1093/abbs/gmw084
Wang, J. H., Shih, K. S., Wu, Y. W., Wang, A. W., & Yang, C. R. (2013). Histone deacetylase inhibitors increase microRNA-146a expression and enhance negative regulation of interleukin-1 b signaling in osteoarthritis fi broblast-like synoviocytes, 21, 1987–1996. https://doi.org/10.1016/j.joca.2013.09.008
Wu, C., Tian, B., Qu, X., Liu, F., Tang, T., Qin, A., … Dai, K. (2014). MicroRNAs play a role in chondrogenesis and osteoarthritis (review). International Journal of Molecular Medicine, 34(1), 13–23. https://doi.org/10.3892/ijmm.2014.1743
Xu, J., Kang, Y., Liao, W., & Yu, L. (2012). MiR-194 Regulates Chondrogenic Differentiation of Human Adipose-Derived Stem Cells by Targeting Sox5. PLoS ONE, 7(3), e31861. https://doi.org/10.1371/journal.pone.0031861
Xu, R., Li, J., Wei, B., Huo, W., & Wang, L. (2017). MicroRNA-483-5p Modulates the Expression of Cartilage-Related Genes in Human Chondrocytes through Down-Regulating TGF-beta1 Expression. The Tohoku Journal of Experimental Medicine, 243(1), 41–48. https://doi.org/10.1620/tjem.243.41
Yan, S., Wang, M., Zhao, J., Zhang, H., Zhou, C., Jin, L., … Fan, Q. (2016). MicroRNA-34a affects chondrocyte apoptosis and proliferation by targeting the SIRT1/p53 signaling pathway during the pathogenesis of osteoarthritis. International Journal of Molecular Medicine, 38(1), 201–209. https://doi.org/10.3892/ijmm.2016.2618
Yapp, C., Carr, A. J., Price, A., Oppermann, U., & Snelling, S. J. B. (2016). H3K27me3 demethylases regulate in vitro chondrogenesis and chondrocyte activity in osteoarthritis. Arthritis Research and Therapy, 18(1), 1–10. https://doi.org/10.1186/s13075-016-1053-7
Yin, X., Wang, J. Q., & Yan, S. Y. (2017). Reduced miR-26a and miR-26b expression contributes to the pathogenesis of osteoarthritis via the promotion of p65 translocation. Molecular Medicine Reports, 15(2), 551–558. https://doi.org/10.3892/mmr.2016.6035
Zhang, L., Sun, X., Chen, S., Yang, C., Shi, B., Zhou, L., & Zhao, J. (2017). Long noncoding RNA DANCR regulates miR-1305 -Smad 4 axis to promote chondrogenic differentiation of human synovium-derived mesenchymal stem cells, 0(July), 1–11. https://doi.org/10.1042/BSR20170347
Zhang, L., Yang, M., Marks, P., White, L. M., Hurtig, M., Mi, Q. S., … Gibson, G. (2012). Serum non-coding RNAs as biomarkers for osteoarthritis progression after ACL injury. Osteoarthritis and Cartilage, 20(12), 1631–1637. https://doi.org/10.1016/j.joca.2012.08.016
Zhang, M., & Wang, J. (2015). Epigenetic regulation of gene expression in osteoarthritis. Genes and Diseases, 2(1), 69–75. https://doi.org/10.1016/j.gendis.2014.12.005
Zhang, W., Zhong, B., Zhang, C., Luo, C., & Zhan, Y. (2018). miR-373 regulates inflammatory cytokine-mediated chondrocyte proliferation in osteoarthritis by targeting the P2X7 receptor. FEBS Open Bio, 8(3), 325–331. https://doi.org/10.1002/2211-5463.12345
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Pakistan BioMedical Journal
This work is licensed under a Creative Commons Attribution 4.0 International License.
This is an open-access journal and all the published articles / items are distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. For comments editor@pakistanbmj.com