Association Of ADAM33 SNP (RS528557) Gene Polymorphism With COPD In Pakistani Population
DOI:
https://doi.org/10.54393/pbmj.v5i1.289Keywords:
COPD, ADAM33, genetic polymorphismAbstract
Chronic obstructive pulmonary disease (COPD) is a major health Problem worldwide. It is currently the fourth leading cause of death with the highest morbidity and mortality throughout the world. ADAM33 has been implicated in the etiology of asthma, another obstructive pulmonary disease. Research shows that its genetic polymorphism may play a pivotal role in COPD pathophysiology; however, data is still inconclusive and no research has been done on it in Pakistan. A total of 102 subjects (51 cases + 51 controls) were recruited. Blood samples were drawn for deoxyribonucleic acid (DNA) isolation from individuals. DNA extraction and Polymerase Chain Reaction (PCR) was optimized and restriction fragment length polymorphism (RFLP) was carried out by incubation at 37οC with digesting enzyme’ Fsel’ for minor allele rs528557. Data was analyzed by using SPSS version 26.0. Data for age, pack smoking/year, frequency of exacerbation and BMI was described by mean ± SD. Alleles and genotypes were described as proportions and percentages. Comparison of the said variables between two groups was performed by Chi-Square as applicable. G allele was found in all cases (100%) and in 74.5% controls at p= <0.001. On the other hand, the frequency of minor allele C was 11.8% and 29.4% in cases and controls respectively at p=0.03. Homozygous major genotype (G/G) was 88.2%, in controls versus 70.6% in cases (p=0.09). Heterozygous genotype (G/C) was 9.2% in controls and 25.5% in cases. Similarly homozygous minor genotype (C/C) was 0.8% in controls and 3.9% in cases respectively at p=0.56. Thus, we show that G allele of rs528557 may be associated with risk of COPD in Pakistani subjects.
References
Aburto, J. M., Villavicencio, F., Basellini, U., Kjærgaard, S., Vaupel, J. W. (2020). Dynamics of life expectancy and life span equality. Proceedings of the National Academy of Sciences of the United States of America, 117(10), 5250–5259. https://doi.org/10.1073/pnas.1915884117
Cielen, N., Maes, K., Gayan-Ramirez, G. (2014). Musculoskeletal disorders in chronic obstructive pulmonary disease. BioMed research international, 2014, 965764. https://doi.org/10.1155/2014/965764
Chacon Cortes, D. F., & Griffiths, L. (2014). Methods for extracting genomic DNA from whole blood samples: current perspectives. Journal of Biorepository Science for Applied Medicine, 2014(2), 1-9. https://doi.org/10.2147/BSAM.S46573
Dal Negro, R. W., Bonadiman, L., Turco, P. (2015). Prevalence of different comorbidities in COPD patients by gender and GOLD stage. Multidisciplinary respiratory medicine, 10(1), 24. https://doi.org/10.1186/s40248-015-0023-2
Dijkstra, A. E., Smolonska, J., van den Berge, M., Wijmenga, C., Zanen, P., Luinge, M. A., Platteel, M., Lammers, J. W., Dahlback, M., Tosh, K., Hiemstra, P. S., Sterk, P. J., Spira, A., Vestbo, J., Nordestgaard, B. G., Benn, M., Nielsen, S. F., Dahl, M., Verschuren, W. M., Picavet, H. S., … LifeLines Cohort study (2014). Susceptibility to chronic mucus hypersecretion, a genome wide association study. PloS one, 9(4), e91621. https://doi.org/10.1371/journal.pone.0091621
Doeing, D. C., Solway, J. (2013). Airway smooth muscle in the pathophysiology and treatment of asthma. Journal of applied physiology (Bethesda, Md.: 1985), 114(7), 834–843. https://doi.org/10.1152/japplphysiol.00950.2012
Durheim, M. T., Smith, P. J., Babyak, M. A., Mabe, S. K., Martinu, T., Welty-Wolf, K. E., Emery, C. F., Palmer, S. M., & Blumenthal, J. A. (2015). Six-minute-walk distance and accelerometry predict outcomes in chronic obstructive pulmonary disease independent of Global Initiative for Chronic Obstructive Lung Disease 2011 Group. Annals of the American Thoracic Society, 12(3), 349–356. https://doi.org/10.1513/AnnalsATS.201408-365OC
Figarska, S. M., Vonk, J. M., van Diemen, C. C., Postma, D. S., Boezen, H. M. (2013). ADAM33 gene polymorphisms and mortality. A prospective cohort study. PloS one, 8(7), e67768. https://doi.org/10.1371/journal.pone.0067768’
Garlisi, C. G., Zou, J., Devito, K. E., Tian, F., Zhu, F. X., Liu, J., Shah, H., Wan, Y., Motasim Billah, M., Egan, R. W., Umland, S. P. (2003). Human ADAM33: protein maturation and localizationI.Biochemical and Biophysical research communication,301(1) 35–43. https://doi.org/10.1016/s0006-291x(02)02976-5
Gosman, M. M., Boezen, H. M., van Diemen, C. C., Snoeck-Stroband, J. B., Lapperre, T. S., Hiemstra, P. S., Ten Hacken, N. H., Stolk, J., Postma, D. S. (2007). A disintegrin and metalloprotease 33 and chronic obstructive pulmonary disease pathophysiology. Thorax, 62(3), 242–247. https://doi.org/10.1136/thx.2006.060988
Hikichi, M., Hashimoto, S., & Gon, Y. (2018). Asthma and COPD overlap pathophysiology of ACO. Allergology International, 67(2), 179-186.
Hillas, G., Perlikos, F., Tsiligianni, I., Tzanakis, N. (2015). Managing comorbidities in COPD. International journal of chronic obstructive pulmonary disease, 10, 95–109. https://doi.org/10.2147/COPD.S54473
Holloway, J. W., Laxton, R. C., Rose-Zerilli, M. J., Holloway, J. A., Andrews, A. L., Riaz, Z., ... & Ye, S. (2010). ADAM33 expression in atherosclerotic lesions and relationship of ADAM33 gene variation with atherosclerosis. Atherosclerosis, 211(1), 224-230.
Hubeau, C., Kubera, J. E., Masek-Hammerman, K., Williams, C. M. (2013). Interleukin-6 neutralization alleviates pulmonary inflammation in mice exposed to cigarette smoke and poly(I:C). Clinical science (London, England : 1979), 125(10), 483–493. https://doi.org/10.1042/CS20130110
Jongepier, H., Boezen, H. M., Dijkstra, A., Howard, T. D., Vonk, J. M., Koppelman, G. H., Zheng, S. L., Meyers, D. A., Bleecker, E. R., Postma, D. S. (2004). Polymorphisms of the ADAM33 gene are associated with accelerated lung function decline in asthma. Clinical and experimental allergy : journal of the British Society for Allergy and Clinical Immunology, 34(5), 757–760. https://doi.org/10.1111/j.1365-2222.2004.1938.x
Kabesch, M., Adcock, I. M. (2012). Epigenetics in asthma and COPD. Biochimie, 94(11), 2231–2241. https://doi.org/10.1016/j.biochi.2012.07.017
Kim, S. J., Kim, E., Rim, K. T. (2018). Comparative analysis of Adam33 mutations in murine lung cancer cell lines by droplet digital PCR, real-time PCR and Insight Onco™ NGS. Molecular & Cellular Toxicology, 14(2), 221-231.
Laghi, F., Adiguzel, N., Tobin, M. J. (2009). Endocrinological derangements in COPD. The European respiratory journal, 34(4), 975–996. https://doi.org/10.1183/09031936.00103708
Laxmi, K. V., Subhakar, K., Lakshmi, B. V., Venkateshwari, A., Jyothy, A. (2016). Association of ADAM33 gene S1 and S2 transmembrane domain polymorphisms in COPD from South-Indian population. Egyptian Journal of Medical Human Genetics, 17(4), 317-323. https://doi.org/10.1016/j.ejmhg.2015.10.00
Liu, Y., Wang, Z. H., Zhen, W., Lu, S. J., Liu, Z., Zou, L. Y., & Xu, J. J. (2014). Association between genetic polymorphisms in the ADAM33 gene and asthma risk: a meta-analysis. DNA and Cell Biology, 33(11), 793-801.
Rogliani, P., Calzetta, L., Coppola, A., Cavalli, F., Ora, J., Puxeddu, E., Matera, M. G., Cazzola, M. (2017). Optimizing drug delivery in COPD: The role of inhaler devices. Respiratory medicine, 124, 6–14. https://doi.org/10.1016/j.rmed.2017.01.006
Simmons, M. S., Connett, J. E., Nides, M. A., Lindgren, P. G., Kleerup, E. C., Murray, R. P., Bjornson, W. M., Tashkin, D. P. (2005). Smoking reduction and the rate of decline in FEV(1): results from the Lung Health Study. The European respiratory journal, 25(6), 1011–1017. https://doi.org/10.1183/09031936.05.00086804
Steiling, K., van den Berge, M., Hijazi, K., Florido, R., Campbell, J., Liu, G., Xiao, J., Zhang, X., Duclos, G., Drizik, E., Si, H., Perdomo, C., Dumont, C., Coxson, H. O., Alekseyev, Y. O., Sin, D., Pare, P., Hogg, J. C., McWilliams, A., Hiemstra, P. S., … Lenburg, M. E. (2013). A dynamic bronchial airway gene expression signature of chronic obstructive pulmonary disease and lung function impairment. American journal of respiratory and critical care medicine, 187(9), 933–942. https://doi.org/10.1164/rccm.201208-1449OC
Tan, J., Liu, A. P., Sun, C., Bai, Y. F., Lv, F. (2014). Association of ADAM33 gene polymorphisms with COPD in the Mongolian population of China. Annals of human biology, 41(1), 9–14. https://doi.org/10.3109/03014460.2013.821165
van den Berge, M., Steiling, K., Timens, W., Hiemstra, P. S., Sterk, P. J., Heijink, I. H., Liu, G., Alekseyev, Y. O., Lenburg, M. E., Spira, A., Postma, D. S. (2014). Airway gene expression in COPD is dynamic with inhaled corticosteroid treatment and reflects biological pathways associated with disease activity. Thorax, 69(1), 14–23. https://doi.org/10.1136/thoraxjnl-2012-202878
van Diemen, C. C., Postma, D. S., Vonk, J. M., Bruinenberg, M., Schouten, J. P., Boezen, H. M. (2005). A disintegrin and metalloprotease 33 polymorphisms and lung function decline in the general population. American journal of respiratory and critical care medicine, 172(3), 329–333. https://doi.org/10.1164/rccm.200411-1486OC
Van Eerdewegh, P., Little, R. D., Dupuis, J., Del Mastro, R. G., Falls, K., Simon, J., Torrey, D., Pandit, S., McKenny, J., Braunschweiger, K., Walsh, A., Liu, Z., Hayward, B., Folz, C., Manning, S. P., Bawa, A., Saracino, L., Thackston, M., Benchekroun, Y., Capparell, N., … Keith, T. P. (2002). Association of the ADAM33 gene with asthma and bronchial hyperresponsiveness. Nature, 418(6896), 426–430. https://doi.org/10.1038/nature00878
Vestbo, J., Hurd, S. S., Agustí, A. G., Jones, P. W., Vogelmeier, C., Anzueto, A., Barnes, P. J., Fabbri, L. M., Martinez, F. J., Nishimura, M., Stockley, R. A., Sin, D. D., Rodriguez-Roisin, R. (2013). Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary. American journal of respiratory and critical care medicine, 187(4), 347–365. https://doi.org/10.1164/rccm.201204-0596PP
Wang, I. M., Stepaniants, S., Boie, Y., Mortimer, J. R., Kennedy, B., Elliott, M., Hayashi, S., Loy, L., Coulter, S., Cervino, S., Harris, J., Thornton, M., Raubertas, R., Roberts, C., Hogg, J. C., Crackower, M., O'Neill, G., Paré, P. D. (2008). Gene expression profiling in patients with chronic obstructive pulmonary disease and lung cancer. American journal of respiratory and critical care medicine, 177(4), 402–411. https://doi.org/10.1164/rccm.200703-390OC
Wang, X., Li, L., Xiao, J., Jin, C., Huang, K., Kang, X., Wu, X., Lv, F. (2009). Association of ADAM33 gene polymorphisms with COPD in a northeastern Chinese population. BMC medical genetics, 10, 132. https://doi.org/10.1186/1471-2350-10-132.
Xiao, C., Puddicombe, S. M., Field, S., Haywood, J., Broughton-Head, V., Puxeddu, I., Haitchi, H. M., Vernon-Wilson, E., Sammut, D., Bedke, N., Cremin, C., Sones, J., Djukanović, R., Howarth, P. H., Collins, J. E., Holgate, S. T., Monk, P., Davies, D. E. (2011). Defective epithelial barrier function in asthma. The Journal of allergy and clinical immunology, 128(3). https://doi.org/10.1016/j.jaci.2011.05.038
Xiao, J., Han, J., Wang, X., Hua, D., Su, D., Bao, Y., Lv, F. (2011). Association of ADAM33 gene with susceptibility to COPD in Tibetan population of China. Molecular biology reports, 38(8), 4941–4945. https://doi.org/10.1007/s11033-010-0637-6
Ying, S. Y., Chang, D. C., Lin, S. L. (2008). The microRNA (miRNA): overview of the RNA genes that modulate gene function. Molecular biotechnology, 38(3), 257–268. https://doi.org/10.1007/s12033-007-9013-8
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Pakistan BioMedical Journal
This work is licensed under a Creative Commons Attribution 4.0 International License.
This is an open-access journal and all the published articles / items are distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. For comments editor@pakistanbmj.com