Antibacterial Activities of Various Antibiotics Against Klebsiella pneumoniae in Clinical Isolates

Antibiotics Against Clinical Isolates of Klebsiella pneumoniae

Authors

  • Ansar Abbas Virtual University, Lahore, Pakistan

DOI:

https://doi.org/10.54393/pbmj.v6i01.844

Keywords:

Antibiotics, Diseases, Patients

Abstract

Antibiotic resistance is not a latest phenomenon, since the introduction of antibiotics, bacteria are noted to posses some resistance. Antibiotic resistance refers to bacteria's capacity to withstand the effects of antibiotics. Objective: To compare the antibacterial effects of different drugs on Klebsiella pneumoniae clinical isolates. Methods: A cross-sectional investigation was conducted in a hospital in Lahore, Pakistan, collecting 1,400 samples over the course of a year. Antibiotic susceptibility testing was performed using the Kirby-Bauer disc diffusion method. Results: The results showed that Imipenem, Gentamycin, Amikacin, Augmentin, Linezolid, Levofloxacin, Ceftazidime, Norfloxacine, and Cefazolin were the most effective antibacterial agents against K. pneumoniae. On the other hand, K. pneumoniae was highly resistant to Meropenem, Cephalothin, Rifampicin, Cefoxitin, and Ampicillin.  Conclusion: The study highlights the growing concern of antibiotic resistance in K. pneumoniae and the importance of preventative measures such as responsible use of antibiotics, development of new treatments, and implementation of infection control strategies in healthcare settings to effectively manage and prevent the spread of resistance

References

Ito A, Hirai K, Inoue M, Koga H, Suzue S, Irikura T, Mitsuhashi S. In vitro antibacterial activity of AM-715, a new nalidixic acid analog. Antimicrobial Agents and Chemotherapy. 1980 Feb; 17(2): 103-8. doi: 10.1128/AAC.17.2.103

Landman D, Salvani JK, Bratu S, Quale J. Evaluation of techniques for detection of carbapenem-resistant Klebsiella pneumoniae in stool surveillance cultures. Journal of Clinical Microbiology. 2005 Nov; 43(11): 5639-41. doi: 10.1128/JCM.43.11.5639-5641.2005

Bratu S, Landman D, Haag R, Recco R, Eramo A, Alam M, et al. Rapid spread of carbapenem-resistant Klebsiella pneumoniae in New York City: a new threat to our antibiotic armamentarium. Archives of Internal Medicine. 2005 Jun; 165(12): 1430-5. doi: 10.1001/archinte.165.12.1430

Haq FU, Imran M, Saleem S, Aftab U, Ghazal A. Investigation of Morchella esculenta and Morchella conica for their antibacterial potential against methicillin-susceptible Staphylococcus aureus, methicillin-resistant Staphylococcus aureus and Streptococcus pyogenes. Archives of Microbiology. 2022 July; 204(7): 1-13. doi: 10.1007/s00203-022-03003-8

Arnott A, Wang Q, Bachmann N, Sadsad R, Biswas C, Sotomayor C, et al. Multidrug-Resistant Salmonella enterica 4,[5], 12: i: -Sequence Type 34, New South Wales, Australia, 2016-2017. Emerging Infectious Diseases. 2018 Apr; 24(4): 751-53. doi: 10.3201/eid2404.171619

Kaleem F, Usman J, Hassan A, Omair M, Khalid A, Uddin R. Sensitivity pattern of methicillin resistant Staphylococcus aureus isolatedfrom patients admitted in a tertiary care hospital of Pakistan. Iranian Journal of Microbiology. 2010; 2(3): 141-3.

Quale JM, Landman D, Bradford PA, Visalli M, Ravishankar J, Flores C, Mayorga D, Vangala K, Adedeji A. Molecular epidemiology of a citywide outbreak of extended-spectrum β-lactamase–producing Klebsiella pneumoniae infection. Clinical Infectious Diseases. 2002 Oct; 35(7): 834-41. doi: 10.1086/342577

Walsh TR. Emerging carbapenemases: a global perspective. International journal of antimicrobial agents. 2010 Nov; 36: S8-14. doi: 10.1016/S0924-8579(10)70004-2

Klemm EJ, Shakoor S, Page AJ, Qamar FN, Judge K, Saeed DK, et al. Emergence of an extensively drug-resistant Salmonella enterica serovar Typhi clone harboring a promiscuous plasmid encoding resistance to fluoroquinolones and third-generation cephalosporins. MBio. 2018 Mar; 9(1): e00105-18. doi: 10.1128/mBio.00105-18

Siegel RE. Emerging gram-negative antibiotic resistance: daunting challenges, declining sensitivities, and dire consequences. Respiratory Care. 2008 Apr; 53(4): 471-9.

Giske CG, Monnet DL, Cars O, Carmeli Y. Clinical and economic impact of common multidrug-resistant gram-negative bacilli. Antimicrobial Agents and Chemotherapy. 2008 Mar; 52(3): 813-21. doi: 10.1128/AAC.01169-07

Fischer CL, Drake DR, Dawson DV, Blanchette DR, Brogden KA, Wertz PW. Antibacterial activity of sphingoid bases and fatty acids against Gram-positive and Gram-negative bacteria. Antimicrobial Agents and Chemotherapy. 2012 Mar; 56(3): 1157-61.

Slama TG. Gram-negative antibiotic resistance: there is a price to pay. Critical Care. 2008 May; 12: 1-7. doi: 10.1186/cc6817

Chopra I, Schofield C, Everett M, O'Neill A, Miller K, Wilcox M, et al. Treatment of health-care-associated infections caused by Gram-negative bacteria: a consensus statement. The Lancet Infectious Diseases. 2008 Feb; 8(2): 133-9. doi: 10.1016/S1473-3099(08)70018-5

Friedrich CL, Moyles D, Beveridge TJ, Hancock RE. Antibacterial action of structurally diverse cationic peptides on gram-positive bacteria. Antimicrobial agents and chemotherapy. 2000 Aug; 44(8): 2086-92. doi: 10.1128/AAC.44.8.2086-2092.2000

Redondo-Lopez V, Cook RL, Sobel JD. Emerging role of lactobacilli in the control and maintenance of the vaginal bacterial microflora. Reviews of Infectious Diseases. 1990 Sep; 12(5): 856-72. doi: 10.1093/clinids/12.5.856

Servin AL. Antagonistic activities of lactobacilli and bifidobacteria against microbial pathogens. FEMS Microbiology Reviews. 2004 Oct; 28(4): 405-40. doi: https://doi.org/10.1016/j.femsre.2004.01.003

McFarland LV. Normal flora: diversity and functions. Microbial Ecology in Health and Disease. 2000 Jan; 12(4): 193-207. doi: 10.1080/08910600050216183

Reid G and Burton J. Use of Lactobacillus to prevent infection by pathogenic bacteria. Microbes and infection. 2002 Mar; 4(3): 319-24. doi: 10.1016/S1286-4579(02)01544-7

Fang G, Li W, Shen X, Perez-Aguilar JM, Chong Y, Gao X, et al. Differential Pd-nanocrystal facets demonstrate distinct antibacterial activity against Gram-positive and Gram-negative bacteria. Nature Communications. 2018 Jan; 9(1): 129. doi: 10.1038/s41467-017-02502-3

Downloads

Published

2023-01-31
CITATION
DOI: 10.54393/pbmj.v6i01.844
Published: 2023-01-31

How to Cite

Abbas, A. . (2023). Antibacterial Activities of Various Antibiotics Against Klebsiella pneumoniae in Clinical Isolates: Antibiotics Against Clinical Isolates of Klebsiella pneumoniae. Pakistan BioMedical Journal, 6(01), 18–21. https://doi.org/10.54393/pbmj.v6i01.844

Issue

Section

Original Article

Plaudit