Evaluation of Hemotoxic, Hepatotoxic and Nephrotoxic Potential of Profenofos-based Insecticide in Freshwater Labeo rohita Fish at Low Concentrations

Evaluation of Profenofos-based Insecticide’s Potential

Authors

  • Arva Mahmood Department of Zoology, Faculty of Life Sciences, University of Okara, Okara, Pakistan
  • Shabbir Ahmad Department of Zoology, Faculty of Life Sciences, University of Okara, Okara, Pakistan
  • Hasnain Akmal Department of Zoology, Faculty of Life Sciences, University of Okara, Okara, Pakistan
  • Khurram Shahzad Department of Zoology, Faculty of Life Sciences, University of Okara, Okara, Pakistan

DOI:

https://doi.org/10.54393/pbmj.v6i11.920

Keywords:

Pesticide, Labeo rohita, Hemotoxicity, Organ toxicity, Biochemistry

Abstract

Profenofos, an organophosphate, is a major pollutant that pollutes freshwater bodies, causing significant impacts on fish health. Objective: Present study was performed to assess the toxicological impacts of pesticide profenofos on hematological, biochemical and histological alterations in different organs of Labeo rohita. Methods: Fish were divided in three groups. Group one was treated as control while second and third groups were exposed to 0.6 mg/L and 1.2 mg/L profenofos respectively for 28 days. Results: Results revealed that MCV, MCHC, MCH, RDW-SD, PCT, PDW, HGB, RBC and HCT levels were significantly reduced. WBC, RDW, PLT, MPV, neutrophils, lymphocytes, monocytes and eosinophils were increased as compared to pesticide free group. Biochemical results showed significant increase in cholesterol, triglycerides, AST, albumin, A/G ratio, HDL T3, T4, blood glucose, creatinine and urea levels were documented while levels of LDL, VLDL, ALT, total proteins, globulin, TSH and blood urea nitrogen (BUN) decreased significantly in exposed fish. Furthermore, histological changes in kidney, gills and liver of fish showed degenerative effects after exposure to profenofos in both concentrations. Conclusions: The present study concluded that profenofos resulted in widespread toxic effects on aquatic organisms specially fish. 

References

Qian S and Lin H. Colorimetric sensor array for detection and identification of organophosphorus and carbamate pesticides. Analytical Chemistry. 2015 May; 87(10): 5395-400. doi: 10.1021/acs.analchem.5b00738. DOI: https://doi.org/10.1021/acs.analchem.5b00738

Naveed A, Venkateshwarlu P, Janaiah C. Impact of sublethal concentration of triazophos on regulation of protein metabolism in the fish Channa punctatus (Bloch). African Journal of Biotechnology. 2010 Nov; 9(45): 7753-8.

Wood JP, Richter W, Smiley MA, Rogers JV. Influence of environmental conditions on the attenuation of ricin toxin on surfaces. Plos One. 2018 Aug; 13(8): e0201857. doi: 10.1371/journal.pone.0201857. DOI: https://doi.org/10.1371/journal.pone.0201857

Reddy NC, Rao JVJE, Safety E. Biological response of earthworm, Eisenia foetida (Savigny) to an organophosphorous pesticide, profenofos. Ecotoxicology and Environmental Safety. 2008 Oct; 71(2): 574-82. doi: 10.1016/j.ecoenv.2008.01.003. DOI: https://doi.org/10.1016/j.ecoenv.2008.01.003

Kaushal J, Khatri M, Arya SK. A treatise on Organophosphate pesticide pollution: Current strategies and advancements in their environmental degradation and elimination. Ecotoxicology and Environmental Safety. 2021 Jan; 207: 111483. doi: 10.1016/j.ecoenv.2020.111483 DOI: https://doi.org/10.1016/j.ecoenv.2020.111483

Oruç EÖ and Usta D. Evaluation of oxidative stress responses and neurotoxicity potential of diazinon in different tissues of Cyprinus carpio. Environmental Toxicology and Pharmacology. 2007 Jan; 23(1): 48-55. doi: 10.1016/j.etap.2006.06.005. DOI: https://doi.org/10.1016/j.etap.2006.06.005

Miller GT. Sustaining the Earth. 6th edition. Thompson Learning. Inc., Pacific Grove, California. 2004

Banaee M, Mirvagafei VA, Rafei G, Majazi AB. Effect of sub-lethal diazinon concentrations on blood plasma biochemistry. International Journal of Environmental Research. 2007 Oct; 2(2) 189-198.

Ismail M, Ali R, Ali T, Waheed U, Khan QM. Evaluation of the Acute Toxicity of Profenofos and Its Effects on the Behavioral Pattern of Fingerling Common Carp (C yprinus carpio L., 1758). Bulletin of Environmental Contamination and toxicology. 2009 May; 82: 569-73. doi: 10.1007/s00128-009-9670-3. DOI: https://doi.org/10.1007/s00128-009-9670-3

Lakra WS and Nagpure NSJ. Genotoxicological studies in fishes: a review. Indian Journal of Animal Sciences. 2009; 79(1): 93-7.

Tahir R, Ghaffar A, Abbas G, Turabi TH, Kausar S, Xiaoxia D et al. Pesticide induced hematological, biochemical and genotoxic changes in fish: a review. Agrobiological Records. 2021 Mar; 3:41-57. doi: 10.47278/journal.abr/2021.005. DOI: https://doi.org/10.47278/journal.abr/2021.005

Saravanan M, Kumar KP, Ramesh M. Haematological and biochemical responses of freshwater teleost fish Cyprinus carpio (Actinopterygii: Cypriniformes) during acute and chronic sublethal exposure to lindane. Pesticide Biochemistry and Physiology. 2011 July; 100(3): 206-11. doi: 10.1016/j.pestbp.2011.04.002. DOI: https://doi.org/10.1016/j.pestbp.2011.04.002

Cai J, Zhou X, Yan X, Lucente D, Lagana C. Top 10 species groups in global aquaculture 2017. Rome: Fisheries Aquaculture Department, Food Agriculture Organization of the United Nations. 2019.

Burtis CA and Ashwood ER. Tietz textbook of clinical chemistry. 2nd edition. W.B. Sunders Company, Philadelphia; 1994.

Rahman ANA, Mohamed AA-R, Mohammed HH, Elseddawy NM, Salem GA, El-Ghareeb WR. The ameliorative role of geranium (Pelargonium graveolens) essential oil against hepato-renal toxicity, immunosuppression, and oxidative stress of profenofos in common carp, Cyprinus carpio (L.). Aquaculture. 2020 Feb; 517 :734777. doi: 10.1016/j.aquaculture.2019.734777. DOI: https://doi.org/10.1016/j.aquaculture.2019.734777

Allain CC, Poon LS, Chan CS, Richmond W, Fu PC. Enzymatic determination of total serum cholesterol. Clinical Chemistry. 1974 Apr; 20(4): 470-5. doi: 10.1093/clinchem/20.4.470. DOI: https://doi.org/10.1093/clinchem/20.4.470

Hart K and Pimentel D. Public health and costs of pesticides. Encyclopedia of pest management. 1st Edition. CRC Press. 2002; 1: 677-9. doi: 10.1201/NOE0824706326.ch313. DOI: https://doi.org/10.1201/NOE0824706326.ch313

Ullah S, Zorriehzahra MJ. Ecotoxicology: a review of pesticides induced toxicity in fish. Advances in Animal and Veterinary Sciences. 2014 Dec; 3(1): 40-57. doi: 10.14737/journal.aavs/2015/3.1.40.57. DOI: https://doi.org/10.14737/journal.aavs/2015/3.1.40.57

Vroumsia T, Moussa D, Feudjio C, Mmae JP. Acute toxicity of monocalm 400sl (monocrotophos) and profenalm 720ec (profenofos) on Oreochromis niloticus (Linnaeus, 1758). Journal of Applied Biosciences. 2014 Jul; 78: 6763-70. doi: 10.4314/jab.v78i0.16. DOI: https://doi.org/10.4314/jab.v78i0.16

Skov PV and Steffensen JJ. The blood volumes of the primary and secondary circulatory system in the Atlantic cod Gadus morhua L., using plasma bound Evans Blue and compartmental analysis. Journal of Experimental Biology. 2003 Feb; 206(3): 591-9. doi: 10.1242/jeb.00113. DOI: https://doi.org/10.1242/jeb.00113

Bantu NA, Zenebehagos Z, Chaitanya K. Toxic effect of profenofos on blood parameters in the freshwater fish, Labeo rohita (Hamilton). Innovate International Journal of Medical & Pharmaceutical Sciences. 2017 Mar; 2(2): 14-8.

Nithiyanandam GT, Maruthanayagam C, Visvanathan PJ. Effects of sublethal level of a pesticide, monocrotophos, on haematology of Cyprinus carpio during the exposure and recovery periods. Nature Environment and Pollution Technology. 2007; 6(4): 891.

Kanu KC, Okoboshi AC, Otitoloju AA. Haematological and biochemical toxicity in freshwater fish Clarias gariepinus and Oreochromis niloticus following pulse exposure to atrazine, mancozeb, chlorpyrifos, lambda-cyhalothrin, and their combination. Comparative Biochemistry and Physiology Part C: Toxicology and Pharmacology. 2023 Aug; 270: 109643. doi: 10.1016/j.cbpc.2023.109643. doi: 10.1016/j.cbpc.2023.109643. DOI: https://doi.org/10.1016/j.cbpc.2023.109643

Al-Emran M, Hasan NA, Khan MP, Islam SM, Bashar A, Zulfahmi I et al. Alterations in hematological parameters and the structure of peripheral erythrocytes in Nile tilapia (Oreochromis niloticus) exposed to profenofos. Environmental Science and Pollution Research. 2022 Apr: 29: 29049–29061. doi: 10.1007/s11356-021-17972-8. doi: 10.1007/s11356-021-17972-8. DOI: https://doi.org/10.1007/s11356-021-17972-8

Kesharwani S, Dube K, Khan R. Effect of profenofos on Rohu fish (Labio rohita): a fish widely cultivated in rural areas of India. International Journal of Current Microbiology and Applied Sciences. 2017 May; 6(5): 1889-93. doi: 10.20546/ijcmas.2017.605.209. DOI: https://doi.org/10.20546/ijcmas.2017.605.209

Ramesh M and Saravanan M. Haematological and biochemical responses in a freshwater fish Cyprinus carpio exposed to chlorpyrifos. International Journal of Integrative Biology. 2008 Jan; 3(1): 80-3.

Atamanalp M and Yanik T. Alterations in hematological parameters of rainbow trout (Oncorhynchus mykiss) exposed to mancozeb. Turkish Journal of Veterinary Animal Sciences. 2003 Jan; 27(5): 1213-7.

Alwan SF, Hadi AA, Shokr AE. Alterations in hematological parameters of fresh water fish, Tilapia zillii, exposed to aluminum. Journal of Science and its Applications. 2009 Apr; 3(1): 12-9.

Nagaraju B, Sunitha K, Anitha A, Rathnamma VV. Evaluation of the acute Toxicity of Profenofos and its Effect on the Behavioral Changes in Freshwater Fish Labeo rohita. Research Journal of Pharmacy and Technology. 2013 May; 6(2): 184-6.

Sharafeldin KM, Abdel-Gawad HA, Ramzy EM, Sweilum MA, Mossad MN. Bioaccumulation of profenofos and its impact on hematological parameters of Nile tilapia, Oreochromis niloticus (Linnaeus, 1758). Aquatic Science. 2015 Jun; 6(2): 48-59.

Ghayyur S, Khan MF, Tabassum S, Ahmad MS, Sajid M, Badshah K et al. A comparative study on the effects of selected pesticides on hemato-biochemistry and tissue histology of freshwater fish Cirrhinus mrigala (Hamilton, 1822). Saudi Journal of Biological Sciences. 2021 Jan; 28(1): 603-11. doi: 10.1016/j.sjbs.2020.10.049. DOI: https://doi.org/10.1016/j.sjbs.2020.10.049

Poopal R, Ramesh M, Maruthappan V, Babu Rajendran RJ. Potential effects of low molecular weight phthalate esters (C16H22O4 and C12H14O4) on the freshwater fish Cyprinus carpio. Toxicology Research. 2017 July; 6(4): 505-20. doi: 10.1039/C7TX00084G. DOI: https://doi.org/10.1039/C7TX00084G

He AY, Ning LJ, Chen LQ, Chen YL, Xing Q, Li JM et al. Systemic adaptation of lipid metabolism in response to low‐and high‐fat diet in Nile tilapia (Oreochromis niloticus). Physiological Reports. 2015 Aug; 3(8): e12485. doi: 10.14814/phy2.12485. DOI: https://doi.org/10.14814/phy2.12485

Sharafeldin K, Abdel-Gawad H, Ramzy E, Sweilum M, Nagy M. Harmful impact of profenofos on the physiological parameters in Nile tilapia, Oreochromis niloticus. Basic and Applied Sciences. 2015 Jan;4(1):19-26. doi: 10.14419/ijbas.v4i1.3832. DOI: https://doi.org/10.14419/ijbas.v4i1.3832

Sharma B. Effect of carbaryl on some biochemical constituents of the blood and liver of Clarias batrachus, a fresh-water teleost. The Journal of Toxicological Sciences. 1999 Aug; 24(3): 157-64. doi: 10.2131/jts.24.3_157. DOI: https://doi.org/10.2131/jts.24.3_157

Leng X, Wu X, Tian J, Li X, Guan L, Weng D. Molecular cloning of fatty acid synthase from grass carp (Ctenopharyngodon idella) and the regulation of its expression by dietary fat level. Aquaculture Nutrition. 2012 Oct; 18(5): 551-8. doi: 10.1111/j.1365-2095.2011.00917.x. DOI: https://doi.org/10.1111/j.1365-2095.2011.00917.x

Nagaraju B and Rathnamma V. Effect of profenofos an organophosphate on protein levels in some tissues of fresh water fish Labeo rohita (Hamilton). International Journal of Pharmacy Pharmaceutical Sciences. 2013 Jan; 5(1): 276-9.

Elezaby M, El-Serafy S, Heckmann R, Sharf-Eldeen K, Seddek M. Effect of some toxicants on the fresh water fish Oreochromis niloticus. Journal of Egyptian German Society of Zoology. 2001 April; 36: 407-344.

Khan MF, Tabassum S, Sadique H, Sajid M, Ghayyur S, Dil K et al. Hematological, biochemical and histopathological alterations in common carp during acute toxicity of endosulfan. International Journal of Agriculture Biology. 2019 Jan; 22(4): 703-9.

Shruti SG and Tantarpale VJ. Protein and amino acid modulation in fresh water fish Ophiocephalus orientalis exposed to cypermethrin. Journal of Pharmaceutical Scientific Innovation. 2014; 3(4): 344-7. doi: 10.7897/2277-4572.034169. DOI: https://doi.org/10.7897/2277-4572.034169

Joseph B and Raj S. Effect of curacron toxicity on the total serum protein content of Cyprinus carpio. Toxicological and Environmental Chemistry. 2010 Nov; 92(10): 1889-93. doi: 10.1080/02772248.2010.494019. DOI: https://doi.org/10.1080/02772248.2010.494019

El-Bouhy ZM, Mohamed FA, Elashhab MW, El-Houseiny W. Toxicity bioassay and sub-lethal effects of profenofos-based insecticide on behavior, biochemical, hematological, and histopathological responses in Grass carp (Ctenopharyngodon idella). Ecotoxicology. 2023 Mar; 32(2): 196-210. doi: doi.org/10.1007/s10646-023-02628-9. DOI: https://doi.org/10.1007/s10646-023-02628-9

Ghayyur S, Tabassum S, Ahmad MS, Akhtar N, Khan MF. Effect of chlorpyrifos on hematological and seral biochemical components of fish Oreochromis mossambicus. Pakistan Journal of Zoology. 2019 Jun; 51(3): 1047. doi: 10.17582/journal.pjz/2019.51.3.1047.1052. DOI: https://doi.org/10.17582/journal.pjz/2019.51.3.1047.1052

Thangavel P, Sumathiral K, Maheswari S, Rita S, Ramaswamy M. Hormone profile of an edible, freshwater teleost, Sarotherodon mossambicus (Peters) under endosulfan toxicity. Pesticide Biochemistry and Physiology. 2010 Jul; 97(3): 229-34. doi: 10.1016/j.pestbp.2010.03.001. DOI: https://doi.org/10.1016/j.pestbp.2010.03.001

Sanna, Ghayyur S, Tabassum S, Noreen S, Mahmood S, Rehman MU et al. Biochemical, Endocrine and Genetic Impairments in Response to Agrochemicals Intoxication in Common Carp (Cyprinus carpio). International Journal of Agriculture Biology. 2021 Mar; 0(0). doi: 10.17957/IJAB/15.1787. DOI: https://doi.org/10.17957/IJAB/15.1787

Li D, Xie P, Zhang XJ. Changes in plasma thyroid hormones and cortisol levels in crucian carp (Carassius auratus) exposed to the extracted microcystins. Chemosphere. 2008 Dec;74(1):13-8. doi: 10.1016/j.chemosphere.2008.09.065. DOI: https://doi.org/10.1016/j.chemosphere.2008.09.065

Prusty A, Kohli M, Sahu N, Pal A, Saharan N, Mohapatra S et al. Effect of short term exposure of fenvalerate on biochemical and haematological responses in Labeo rohita (Hamilton) fingerlings. Pesticide Biochemistry and Physiology. 2011 Jun; 100(2): 124-9. doi: 10.1016/j.pestbp.2011.02.010. DOI: https://doi.org/10.1016/j.pestbp.2011.02.010

Zahran E, Risha E, Awadin W, Palić D. Acute exposure to chlorpyrifos induces reversible changes in health parameters of Nile tilapia (Oreochromis niloticus). Aquatic Toxicology. 2018 Apr ; 197: 47-59. doi: 10.1016/j.aquatox.2018.02.001. DOI: https://doi.org/10.1016/j.aquatox.2018.02.001

Pham VN, Roman BL, Weinstein BM. Isolation and expression analysis of three zebrafish angiopoietin genes. Developmental Dynamics: An Official Publication of the American Association of Anatomists. 2001 Aug; 221(4): 470-4. doi: 10.1002/dvdy.1157. DOI: https://doi.org/10.1002/dvdy.1157

Dhondt A, Vanholder R, Van Biesen W, Lameire N. The removal of uremic toxins. Kidney International. 2000 Aug; 58: S47-S59. doi: 10.1046/j.1523-1755.2000.07606.x. DOI: https://doi.org/10.1046/j.1523-1755.2000.07606.x

Butchiram M, Tilak K, Raju PJ. Studies on histopathological changes in the gill, liver and kidney of Channa punctatus (Bloch) exposed to Alachlor. Journal of Environmental Biology. 2009 Mar; 30(2): 303-6.

Hassaninezhad L, Safahieh A, Salamat N, Savari A, Majd NE. Assessment of gill pathological responses in the tropical fish yellowfin seabream of Persian Gulf under mercury exposure. Toxicology Reports. 2014 Jan; 1: 621-8. doi: 10.1016/j.toxrep.2014.07.016. DOI: https://doi.org/10.1016/j.toxrep.2014.07.016

Evans DH. The Fish Gill: Site of Action and Model for Toxic Effects of Environmental Pollutants. Environmental Health Perspectives. 1987 Apr; 71: 47-58. doi: 10.1289/ehp.877147. DOI: https://doi.org/10.1289/ehp.877147

Dutta HM, Munshi JSD, Roy PK, Singh NK, Motz L, Adhikari A. Effects of Diazinon on bluegill sunfish, Lepomis macrochirus, gills: scanning electron microscope observations. Experimental Biology Online Annual. 1997; 2: 1-11. doi: 10.1007/s00898-997-0017-4. DOI: https://doi.org/10.1007/s00898-997-0017-4

Ferrari A, Venturino A, de D’Angelo AM. Effects of carbaryl and azinphos methyl on juvenile rainbow trout (Oncorhynchus mykiss) detoxifying enzymes. Pesticide Biochemistry and Physiology. 2007 Jun; 88(2): 134-42. doi: 10.1016/j.pestbp.2006.10.005. DOI: https://doi.org/10.1016/j.pestbp.2006.10.005

Mushigeri S, David M. Fenvalerate induced changes in the Ach and associated AchE activity in different tissues of fish Cirrhinus mrigala (Hamilton) under lethal and sub-lethal exposure period. Environmental Toxicology and Pharmacology. 2005 Jul; 20(1): 65-72. doi: doi.org/10.1016/j.etap.2004.10.011. DOI: https://doi.org/10.1016/j.etap.2004.10.011

Butterworth RF. Hepatic encephalopathy. Alcohol Research Health. 2003; 27(3): 240.

Boran H, Capkin E, Altinok I, Terzi E. Assessment of acute toxicity and histopathology of the fungicide captan in rainbow trout. Experimental Toxicologic Pathology. 2012 Mar; 64(3): 175-9. doi: /10.1016/j.etp.2010.08.003. DOI: https://doi.org/10.1016/j.etp.2010.08.003

Rahman M, Hossain Z, Mollah M, Ahmed G. Effect of Diazinon 60 EC on Anabas testudineus, Channa punctatus and Barbodes gonionotus. Naga, the ICLARM Quarterly. 2002 Jun; 25(2): 8-12.

Downloads

Published

2023-11-30
CITATION
DOI: 10.54393/pbmj.v6i11.920
Published: 2023-11-30

How to Cite

Mahmood, A., Ahmad, S., Akmal, H., & Shahzad, K. (2023). Evaluation of Hemotoxic, Hepatotoxic and Nephrotoxic Potential of Profenofos-based Insecticide in Freshwater Labeo rohita Fish at Low Concentrations : Evaluation of Profenofos-based Insecticide’s Potential. Pakistan BioMedical Journal, 6(11), 32–40. https://doi.org/10.54393/pbmj.v6i11.920

Issue

Section

Original Article

Plaudit