Systematic Review

Knee Osteoarthritis: A Systematic Review on Different Exercise Therapy Interventions on Knee Adduction Movement

Muhammad Mahnoor¹, Muhammad Waseem Akhtar¹, Quratulain Maqsood², Aleena Sumrin², Muhammad Mahmood Alam², Danish Hassan², Muhammad Ramzan³ and Wajeeha Zia³

¹Department of Rehabilitation Sciences, Akhtar Saeed Medical and Dental College, Lahore, Pakistan
²Department of Centre for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan
³Riphah College of Rehabilitation and Allied health sciences, Riphah International University, Lahore, Pakistan

ARTICLE INFO

Key Words:
 Alignment, Exercise Interventions, Knee Osteoarthritis, Knee Adduction Movement

How to Cite:

*Corresponding Author:
 WajeehaZia,
 Riphah College of Rehabilitation and Allied health sciences, Riphah International University, Lahore, Pakistan

Received Date: 6th May, 2022
Acceptance Date: 26th May, 2022
Published Date: 31st May, 2022

INTRODUCTION

The most common clinical presentations include pain, stiffness, and reduced physical ability, resulting in disability and activity limitations. Recent research has looked at the involvement of biomechanical factors in the development and progression of KOA [1]. When a person has KOA, the KAM is used more commonly as a replacement for the medial tibiofemoral contact force, reflecting the relative force distribution across the joint. KAM differs considerably between participants despite its close relationship to medial tibiofemoral contact forces. There is currently no link between structural disease and pain severity [2,3]. Strengthening exercises for the quadriceps and neuromuscular exercise, as well as hip abductors and adductors, have been utilized to minimize knee joint loading [4]. On the other hand, strengthening hip muscles will correct pelvic imbalances. It is possible for the KAM to increase as a result of the contralateral pelvis dropping and the center of mass shifting from the stance leg. Regardless of the specific ET technique used, the main mission is to restore the correct biomechanics of the lower limbs. Reduced KAM may be one of the reasons for the decrease in pain and impairment. Exercise training has observable clinical benefits, but it is unknown whether it affects the KAM. As a first step, we wanted to determine whether
exercise therapy's clinical benefits related to changes in KAM in people with KOA [5]. As there were so few studies that evaluated the required outcomes, only studies that measured pain scores and physical function were able to confirm ET's effects on KAM in patients with KOA, and qualitative analysis of ET on these dimensions was conducted.

**METHODS**

**Protocol:** The Cochrane Collaboration and a preferred reporting technique for systematic reviews and meta-analyses that fulfill PRISMA standards are used to report systematic reviews.

**Sources of data and search technique:** The researcher searched EMBASE, MEDLINE, and Cochrane CENTRAL from their creation until November 2020. To find potentially qualifying papers, the search was extended to include systematic reviews and citation monitoring methodologies [6]. To find the grey literature, researchers employed Google Scholar and OpenGrey, a specialized library of technical or research reports, conference papers, and government publications.

**Table 1:** PubMed database literature search strategy

| Eligibility for study: Randomized controlled trials (RCTs) were included if they examined physical function, pain, muscular strength, and KAM in patients with KOA regardless of other outcomes [7]. When diseases or injuries cause pain, physical exercise can be recommended for the relief of symptoms [8]. Exercise training is any type of training regardless of intensity, volume, or type of exercise (for example, exercises that improve motor control and strength, like high-load and low-load strengthening exercises). We excluded a study that did not examine any of the three outcomes above, a study that only tested a single bout of exercise, and a study that used multimodal therapies (e.g., foot orthotics, manual therapy, and exercise therapy) [9].

**Selection of studies and data extraction:** Based on the eligibility criteria as shown in Table 1, we used a common screening checklist for each trial. Studies with titles or abstracts that did not meet the requirements were disqualified [10]. The reviewers discussed their differences regarding study eligibility. To obtain clarifications on studies where there was insufficient information to assess eligibility criteria, the authors were contacted via email. Publications reporting results from the same population when more than one publication reported the same result were excluded [11]. At least twice, authors were contacted by email whenever data was required for synthesis or to assess the quality of a study. Missing data estimation was conducted whenever possible. If insufficient data were present, the study was discarded.

**Evidence level and bias risk assessment:** To assess bias risk the Cochrane Collaboration's method for measuring bias risk was used. In total, three types of bias were evaluated in the included studies: high, low, and unclear bias. In this case, a funnel plot was not appropriate due to the small number of studies examined [12]. Evidence is defined as the consistency of findings across several high-quality trials or studies; Evidence of moderate quality is consistent findings across multiple low-quality trials; Evidence of limited quality is the consistency of findings among low-quality studies; and none (no trial evidence is available) [13]. According to the reviewer team, high-quality studies could only be considered if each of the five factors was present. The trials were deemed low quality when other biases were present. Consequently, the "unclear" classification was deemed harmful, and the evidence was lowered [14].

**Measures of outcome:** Kinematic and kinetic analysis is used to create KAM, and body weight is used as a normalization factor. The studies included in this review were conducted with subjects walking barefoot at their own pace. To assess pain, this study used the pain subscale of WOMAC, and to assess physical function, it used the physical function subscale. There was a considerable variation in the numeric scales used for the physical function and pain subscales in trials, but there was no pooling, no modifications were necessary, so the data were reported in their raw form [15].
Results and conclusions. The original scale is used for all values analyzed qualitatively [19].

Analysis of Data: The biomechanical differences among the workouts included in the study precluded the pooling of data due to clinical heterogeneity. The results were therefore analyzed qualitatively [19].

Results
There were 1917 records produced by manual and automated searches from Oct. to Nov. 2021. A search of gray literature on Google Scholar found 1850 citations, but none on OpenGrey. These two databases contained no relevant articles, other than duplicates already on the list [20]. The title and abstract of the 1803 records were reviewed, with 1770 being discarded. The remaining 33 were subjected to a full-text review, as indicated in figure 1. The qualitative analysis included 233 patients. In all other studies, except for the one that recruited only females, the participants were subjected to a full-text review, as indicated in figure 1. In the study, both aligned and non-aligned individuals who participated in a strengthening program significantly increased their quadriceps strength compared to the control group.

Evaluation of bias and evidence: In general, the interventions in these studies did not perform binding of therapists and patients [26]. ET positively affects pain, physical function, and muscle strength; however, ET does not have a meaningful effect on KAM (Figure 2).

Figure 1: The PRISMA inclusion procedure flow chart

Throughout the included trials, training protocols varied. In a 12-week treatment, patients used ankle cuff weights and elastic bands five times/week to develop hip adductor and abductor muscles [21]. To achieve the goals of the study, patients carried out home workouts as well as visited a physiotherapy clinic seven times to get instructions and measure their load progression. In the exercise program, exercise physiologists focused on knee extension, hip adduction, hip abduction, leg press, and ankle flexion strengthening. As a control group, study participants did not undergo any ET procedures and were advised not to undergo additional treatments [22].

Intervention effects
Exercise’s effect on KAM: The KAM did not differ between the strengthening and control groups during the 12-week study and the 95% confidence interval (CI) is between 0.339 and 0.353 Nm/BW * HT% = 0.146. As compared to the control group, KAM in the strengthening group increased by 4.6 percent. In KAM, there were no statistically significant differences between the strengthening and sham-exercise groups [23].

Effect of exercise on physical function and pain: After six months, trial participants had better pain and physical function, with no significant differences between groups. Strengthening participants showed significant pain reduction when compared with controls in the neutrally aligned group [24].

Exercise’s effects on muscle strength: Patients in the hip strengthening group had considerably larger hip joint torques and knee extension torques than those in the control group, according to the study. When patients in the strengthening group were compared to those in the sham-exercise group, in terms of knee extension strength, knee flexion, plantar flexion, hip adduction, and hip abduction, identical results were achieved [25]. In the study, both aligned and non-aligned individuals who participated in a strengthening program significantly increased their quadriceps strength compared to the control group.

Table 2: Results and conclusions. The original scale is used for all values

<table>
<thead>
<tr>
<th>Table 2</th>
<th>Results and conclusions. The original scale is used for all values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analysis of Data: The biomechanical differences among the workouts included in the study precluded the pooling of data due to clinical heterogeneity. The results were therefore analyzed qualitatively [19].</td>
<td></td>
</tr>
<tr>
<td>Results</td>
<td></td>
</tr>
<tr>
<td>There were 1917 records produced by manual and automated searches from Oct. to Nov. 2021. A search of gray literature on Google Scholar found 1850 citations, but none on OpenGrey. These two databases contained no relevant articles, other than duplicates already on the list [20]. The title and abstract of the 1803 records were reviewed, with 1770 being discarded. The remaining 33 were subjected to a full-text review, as indicated in figure 1. The qualitative analysis included 233 patients. In all other studies, except for the one that recruited only females, the participants were subjected to a full-text review, as indicated in figure 1. In the study, both aligned and non-aligned individuals who participated in a strengthening program significantly increased their quadriceps strength compared to the control group.</td>
<td></td>
</tr>
</tbody>
</table>

Figure 2: Percentage of each risk of bias item judged by review
DISCUSSION

According to the current systematic study, ET significantly reduces pain, increases athletic ability, and increases muscle strength, but it has minimal impact on KAM. Thus, the clinical effectiveness of different Exercise Therapy procedures did not result in a change in KAM in patients with KOA [27]. ET has been shown to have good clinical effects in several rigorous systematic studies and clinical guidelines; however, this is the first systematic evaluation to show that, even when ET had therapeutic improvements, its dynamic KAM remained unchanged. Only a few studies are included in this review, so conclusions should be interpreted with caution. On the other hand, the results of the study are supported by research that did not meet the inclusion criteria. After eight weeks of strengthening hip abductors, pain and strength improved, but no significant changes were detected in KAM. Data consistently demonstrate that the biomechanical principles underlying exercise efficacy owing to KAM reduction have no validity in the literature. In contrast, the KAM's balance is justified by the ability to induce abduction moments through quadriceps contraction. Increasing quadriceps power decreases knee flexion, thus decreasing compression loads on the tibia and femur. Before they can be considered clinically as unloading factors in KOA patients, these pathways need to be studied further. The hip abductors have also been proposed as an unloading mechanism. Offloading is done by strengthening the hip abductors on the stance limb and shifting the center of mass towards the swing limb. KAM is only affected by such processes when the hip abductors are weak and there is a contralateral hip drop. Only one study addressing this issue concluded that pelvic drops increased with age. A protective intervention in terms of joint loading was not examined in this review. According to any of the included studies, the KAM did not change significantly after ET, but other parameters should be assessed as well, including muscle strength and neuromuscular control, although each of these may contribute to illness progression. KOA is associated with high BMI levels, which were often observed in the studies included in the analysis. KOA is highly associated with a high BMI, according to previous research. When KOA was moderate, increased BMI was linked to alterations in knee biomechanical characteristics during locomotion in cross-sectional research. Weight loss provides a number of therapeutic benefits. It can lead to joint degeneration, as well as reduced pain and disability, increased walking speed, and improved knee function. Despite an increase in joint stress, over the course of a year, a 16-week weight loss program had excellent clinical improvements but no improvement in structural markers of disease progression. Future research should investigate other mechanisms that explain ET’s therapeutic success. In addition, the few studies we included could affect the generalizability of our findings. Because of clinical variability within ET regimens, data pooling was not possible. Due to the absence of control groups in randomized controlled trials, the available evidence may have been diminished. To test the effect of ET on dynamic knee stress, some specific types of biomechanical changes were required—for example, a greater trunk lean or reduced contralateral pelvic drop—rather than considering the entire KOA population. Researchers will be better able to control possible biases in future studies. Evidence quality was lowered by the absence of selective reporting bias and outcome assessor blinding in some of the included studies. ET did not reduce KAM, but it did improve physical function and pain. Aside from reducing dynamic joint load, there may be other mechanisms by which ET affects KOA.

CONCLUSION

A change in knee adduction time was not associated with the therapeutic benefits of exercise therapy. Exercise therapy for knee osteoarthritis may not be effective if there is no momentary adduction. Dynamic joint loading may result from a shift in neuromuscular control after exercise therapy.

REFERENCES


[6] Huang C, Chan PK, Chiu KY, Yan CH, Yeung SS, Fu SN. Exploring the relationship between pain intensity and


