Milk contains important nutrients such as minerals, vitamins, proteins and lipids and are consumed by all age group of humans around the globe [1, 2]. It is impossible to avoid contamination of milk with micro-organisms because presence of nutrients therefore quality of milk can be determined by the microbial content in milk [3]. Raw milk when leaving the udder has very low microbial contamination but due to possible exposure to various environmental contaminants microbial load immediately increases after milking [4]. The microbial contamination can be occurred from ill cow's udder and teat, unhygienic milking utensils, poor milking practice, and low maintained transportation [5,6]. The regular request of bacteriological analysis of the quarter milk samples is hindered by financial considerations. Alternative parameters are also used to define patterns in the health of udder production in a dairy herd, as these limits suggest inflammation [7]. The manufacturer of such products, usually follow traditional procedures and shows lack of concern about quality of milk used. These practices cause harmful microorganisms to gain access in milk-based products [8,9]. Effective and good hygienic practice at farm can minimize the microbial contamination in milk before transporting to the markets, screening of milk is important for protection against milk

INTRODUCTION

Milk contains important nutrients such as minerals, vitamins, proteins and lipids and are consumed by all age group of humans around the globe [1, 2]. It is impossible to avoid contamination of milk with micro-organisms because presence of nutrients therefore quality of milk can be determined by the microbial content in milk [3]. Raw milk when leaving the udder has very low microbial contamination but due to possible exposure to various environmental contaminants microbial load immediately increases after milking [4]. The microbial contamination can be occurred from ill cow's udder and teat, unhygienic milking utensils, poor milking practice, and low maintained transportation [5,6]. The regular request of bacteriological analysis of the quarter milk samples is hindered by financial considerations. Alternative parameters are also used to define patterns in the health of udder production in a dairy herd, as these limits suggest inflammation [7]. The manufacturer of such products, usually follow traditional procedures and shows lack of concern about quality of milk used. These practices cause harmful microorganisms to gain access in milk-based products [8,9]. Effective and good hygienic practice at farm can minimize the microbial contamination in milk before transporting to the markets, screening of milk is important for protection against milk.
borne infections [10]. The temperature at which milk is kept after milking disturbs the quality of milk and likewise influence the production of microbial growth [11]. To prevent milk contaminations, it is necessary to boil or pasteurize the milk after milking or cool immediately and keep in a clean environment. The pathogens in milk gain entry mainly to low animal hygiene and poor milking[12, 13]. Therefore, the main purpose of this research was to determine bacterial load in raw milk samples from different farms and to isolate different type of bacteria and its strains and to find out antibiotic resistance bacteria in mastitis positive and negative samples.

METHODS

A total of 30 cow milk samples from dairy farms of Lahore were collected. Firstly, cow teats were sterilized and milk was collected from each teat of a cow in a sterilized container. All the containers were stored at 4°C for further processing. The milk sample collection procedure was performed according to Quinn et al.[14].

Mastitis screening test: The surf eld mastitis test was performed for finding of subclinical and clinical mastitis. Milk sample was mixed with surf detergent in the Petri plate and stirred with a sterilized glass rod in a gentle circular rotation. The appearance of clots and gel-like structures was observed[15].

Microbial Culturing: Microbial culturing was performed directly on nutrient agar and after the growth of samples on nutrient agar, morphological characters of the colonies were observed by direct examination of colonies. MacConkey agar and mannitol salt agar were used for differentiation in growth according to gram-positive and gram-negative bacteria. Gram staining was done on sterile glass slide for all isolated colonies[16].

Biochemical tests: For the biochemical identification of bacteria catalase, oxidase, indole test, methyl red test, Voges Proskauer test and triple sugar iron tests were performed for characterization of bacteria[17].

Antibiotic Sensitivity test: The antibiotic sensitivity tests of the bacterial isolates were performed according to the NCCLS (National Committee for Clinical Laboratory Standards) method by using Kirby Bauer disk diffusion test on Muller Hinton agar. Mueller Hinton Agar was autoclaved, allowed to cool and poured into the sterile petri dishes and the plates were inoculated by using a sterile swab, a total of 48 plates were swabbed for 48 isolated colonies and antibiotics discs (Tazobactam, Amikacin, Gentamicin, Tobramycin, Imipenem, Clavulanic acid, Ceftriaxone, Levofloxacin, Doxycycline Linezolid, Ampicillin, Vancomycin, Nitrofurantoin, Fosfomycin, Meropenem, Trimethoprim, Polymyxin B, Nalidixic acid) were placed on the plates at a distant position. All plates were incubated at 37°C for 24hr. The zone of inhibition was measured and results for each isolate was concluded as susceptible, intermediate, and resistant based on the standards of inhibition zone given by CLSI (Clinical and Laboratory Standard Institute).

Molecular Identification: Extraction of Bacterial DNA was performed by using two methods, the QIAGEN Kit method for gram-positive bacteria and PEG (polyethylene glycol) buffer method for gram negative bacteria. QIAGEN kit method is column-based DNA extraction followed by manufacturer’s protocol. For gram-negative bacterial DNA isolation boiling method was used, in this method, PEG polyethylene buffer was used. PCR was performed by using 16SrRNA primers. Forward primer: 27F 5’-AGA GTT TGA TTC TGG CTC AG-3’ and Reverse primer: 515R 5’-TTA CCG CGG CTG CTG GCA C-3’. The PCR amplicons were placed at 4°C and then characterized by agarose gel electrophoresis.

Sequencing and Sequence Analysis: The amplified 16S rRNA fragment was precipitated and sequenced using DNA sequencing services of First Base Company Lahore. 16S rRNA sequences were analyzed by using BLAST (Basic Local Alignment Search Tool) available from the website of NCBI (National Center for Biotechnology Information) to identify the similar matches with existing reference sequences.

Statistical Analysis: Chi- Square value and P value were calculated by applying Chi-Square test on results. ANOVA test was applied on antibiotics sensitivity test results. All statistical values were interpreted and significant and non-significant associations were recorded.

RESULTS

Mastitis test: When mastitis test was performed in total 30 raw milk samples 14 samples were mastitis positive and 16 samples were mastitis negative, in 16 negative samples, 8 samples showed growth on nutrient agar and 8 sample did not show any growth on nutrient agar.

Microbial Culturing: Out of 30 samples 22 showed growth on nutrient agar and 8 did not showed any growth. Total 48 colonies were selected on nutrient agar.

Biochemical Characterization of the Bacterial Isolates: In gram staining results in total 48 isolated bacteria 25 were gram negative and 23 were gram-positive.
Growth of samples on Nutrient Agar showed growth

P-value

Total

Chi-square value

Streptococcus spp. were matched with Pseudomonas spp. with identities of 99%, 16 bacteria were analyzed by BLAST on NCBI. On BLAST 16 bacteria was performed. In results, 23 isolates were sensitive to tazobactam, 14 isolates were intermediate to Fosfomycin and 19 were resistant to gentamicin.

16s rRNA sequencing results: The sequencing results were analyzed by BLAST on NCBI. On BLAST 16 bacteria were matched with E. coli with identities of 99%, 8 were matched with Klebsiella spp. with identities of 99%, 1 was matched with Pseudomonas spp. with identities of 99%, 17 were matched with S. aureus with identities of 99%, 6 were Streptococcus spp. with identities of 89% (Table 1).

<table>
<thead>
<tr>
<th>Microbial Culturing base results</th>
<th>Number of Isolated bacteria</th>
<th>16s rRNA Sequencing Results</th>
<th>Query cover</th>
<th>Percentage identical</th>
<th>Accession No by NCBI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Escherichia coli</td>
<td>16</td>
<td>Escherichia coli strain</td>
<td>100.00%</td>
<td>99.60%</td>
<td>MT230530.1</td>
</tr>
<tr>
<td>Klebsiella</td>
<td>8</td>
<td>Klebsiella pneumoniae strain sctcc18</td>
<td>100.00%</td>
<td>99.84%</td>
<td>H0622339.1</td>
</tr>
<tr>
<td>Pseudomonas</td>
<td>1</td>
<td>Pseudomonas sp. KLEPS3</td>
<td>100.00%</td>
<td>99.81%</td>
<td>J0910871.1</td>
</tr>
<tr>
<td>Staphylococcus aureus</td>
<td>17</td>
<td>Staphylococcus aureus subsp. Aureus</td>
<td>100.00%</td>
<td>99.45%</td>
<td>CP054876.1</td>
</tr>
<tr>
<td>Streptococcus</td>
<td>6</td>
<td>Streptococcus sp.</td>
<td>100.00%</td>
<td>88%</td>
<td>EU826665.1</td>
</tr>
</tbody>
</table>

Table 1: Sequencing results matched on BLAST. In the mastitis test result chi-square test was applied to check significant association (Table 2). The chi-square value was recorded as 17.86 and the p-value as 0.029 which shows there is significant association between them as the p-value was less than 0.05.

<table>
<thead>
<tr>
<th>Mastitis Test</th>
<th>Growth of samples on Nutrient Agar</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mastitis Negative</td>
<td>Showed no growth</td>
<td>Showed growth</td>
</tr>
<tr>
<td>Mastitis Positive</td>
<td>0</td>
<td>14</td>
</tr>
<tr>
<td>Total</td>
<td>8</td>
<td>22</td>
</tr>
</tbody>
</table>

Table 2: Mastitis Test. Chi-square value = 17.86, P-value = 0.029

Biochemical tests Association with Isolated colonies on Differential Media: The p-value was calculated between the association of biochemical tests and colony characteristics on MacConkey agar and mannitol salt agar (Table 3). In case of biochemical test (catalase, oxidase, indole, MR, VP) association with isolated colonies on MacConkey agar and mannitol salt agar p-value was lesser than 0.05 which showed the important association it means the result of all biochemical test of isolated bacteria had a significant difference, each colony showed a different result, and it showed the different types of gram-negative and gram-positive bacteria. In the case of the triple sugar iron test association with isolated bacteria is non-significant because the p-value was more than 0.05 it shows that all bacteria isolated on MacConkey agar had the same result. Only gram-negative bacteria can grow on MacConkey agar and all these gram-negative bacteria were triple sugar iron test positive and bacteria that can grow on mannitol salt agar are gram-positive and these are always negative results for triple sugar iron test.

<table>
<thead>
<tr>
<th>Biochemical tests</th>
<th>Colony characteristics on MacConkey agar</th>
<th>Colony characteristics on mannitol salt agar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Catalase</td>
<td>Chi-square value</td>
<td>P-value</td>
</tr>
<tr>
<td>Oxidase Test</td>
<td>12.42</td>
<td>0.034</td>
</tr>
<tr>
<td>Indole Test</td>
<td>11.98</td>
<td>0.046</td>
</tr>
<tr>
<td>Methyl-Red Test</td>
<td>9.38</td>
<td>0.039</td>
</tr>
<tr>
<td>Voges-Proskauer Test</td>
<td>14.22</td>
<td>0.022</td>
</tr>
<tr>
<td>Triple Sugar Iron</td>
<td>10.43</td>
<td>0.053</td>
</tr>
</tbody>
</table>

Table 3: Biochemical Tests Result

ANOVA test was applied on results of antibiotic sensitivity test. We compared our result with the p-value if the p-value > 0.05 it showed significant result. If the p-value is less than 0.01 then it means the results are highly significant from the table 6 the p-value for the replication is 0.004 and for the treatment is 0.030 that are less than 0.05 it means results are significant (Table 4).

<table>
<thead>
<tr>
<th>Source of Variation</th>
<th>SS</th>
<th>DF</th>
<th>MS</th>
<th>F</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antibiotic Discs</td>
<td>51.59</td>
<td>7.00</td>
<td>7.37</td>
<td>15.00**</td>
<td>0.00</td>
</tr>
<tr>
<td>Samples</td>
<td>32.27</td>
<td>24.00</td>
<td>1.34</td>
<td>2.74**</td>
<td>0.00</td>
</tr>
<tr>
<td>Error</td>
<td>82.53</td>
<td>168.00</td>
<td>0.49</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>166.39</td>
<td>199.00</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 4: ANOVA Table

D I S C U S S I O N

The aim of this study was assessment of microbial quality of raw milk and detection of different strains of bacteria. At the time of milking, milk has a low bacterial count but after milking the bacterial load increases, due to various external and internal contaminants [6]. Maintaining good quality of milk is a main challenge in dairy sectors worldwide, where production of milk and its products take place in unhygienic conditions [18,19]. In the present study 30 cow milk samples were collected from dairy farms in Lahore and raw
Microbiological Quality of Raw Milk

Afreen A et al.,

PBMJ VOL. 5, Issue. 5 May 2022

DOI: https://doi.org/10.54393/pbmj.v5i5.469

Microbiological safety for consumers. In present study on the basis of culturing and biochemical identification, 16 E. coli, 8 Klebsiella spp., 1 Pseudomonas aeruginosa, 17 S. aureus, and 6 Streptococcus spp., were detected in mastitis positive and negatives samples, all these bacteria were identified by microbial culturing and biochemical tests and confirmed by 16S rRNA sequencing. Including 16 E. coli, 8 Klebsiella spp., 1 Pseudomonas aeruginosa, 17 S. aureus, and 6 Streptococcus spp., were isolated including 16 E. coli, 8 Klebsiella spp., 1 Pseudomonas spp., and Streptococcus spp. In another study species composition of microbiota of cow’s udder and raw milk quality was detected. The milk from animals with clinical and subclinical mastitis had higher number of somatic cell count and in mastitis positive samples 16 species of bacteria were isolated. In microbial culture, the microflora included S. aureus, S. hyicus spp., (Staphylococcus hyicus), S. agalactiae (Streptococcus agalactiae), S. lentus (Staphylococcus lentus), and S. intermedius (Streptococcus intermedius) [21]. In the results most of isolated bacteria showed resistance to gentamicin. Comparative studies on resistance profiles of E. coli isolated from goats’ milk are very rare and found approximately 18.2% of the isolates to be resistant against ampicillin [22]. According to procedure involving Triton X-100-based pretreatment and an inhibitor removal resin was superior to all other methods tested in terms of DNA yield, sensitivity, ease of sample handling, time efficiency, and cost per sample. But in present study two methods were used, Qiagen kit method and PEG buffer method was used for bacterial extraction. Gram positive bacteria cell wall have a thicker layer of peptidoglycan and their DNA cannot extracted by boiling method by using PEG buffer, therefore special kits such as Qiagen kit used for gram positive bacteria extraction. A research of “Microbiological safety concerns of raw milk” showed that microbial contamination of milk was raised from unhygienic conditions coupled with improper processing and handling result it unsafe products causing several diseases outbreaks [23]. Microbiological analysis of raw milk indicated presence of pathogenic organisms like coliforms [18] S. aureus [21], E. coli [24], E. aerogenes spp., (Enterobacter aerogenes), Salmonella typhi [25] Salmonella spp. from India. Klebsiella spp., Proteus spp., Enterobacter spp., Mycobacterium spp. from Ghana [25] E. coli, Aeromonas, Salmonella from Bangladesh. E. coli, Bacillus spp., Clostridium spp., coliforms from Pakistan, also different species of different kinds of bacterial are also seen in the milk in different countries. The most common microorganisms associated with the environment are E. coli and S. uberis (Streptococcus uberis). The vast majority of mastitis of bacterial origin (80% of cases) is caused by five species of bacteria, namely E. coli, S. uberis, S. aureus, S. (Streptococcus dysgalactiae) and S. agalactiae [24]. The study indicated that the dominant microbial flora associated with raw milk samples in and around were in the order of Lactobacillus spp. > S. aureus > E. coli > Bacillus spp. > Pseudomonas fluorescens > Salmonella spp. > among the isolated pathogens. The presence of those bacteria in milk suggested contamination from various sources, such as animal, human, environment, utensils and others [24]. In current study total 48 bacteria were isolated from mastitis positive and negatives samples, all these bacteria were identified by microbial culturing and biochemical tests and confirmed by 16S rRNA sequencing, including 16 E. coli, 8 Klebsiella spp., 1 Pseudomonas aeruginosa, 17 S. aureus, and 6 Streptococcus spp.,

CONCLUSION

Different pathogens can grow in milk and milk products and produce toxic metabolites. Products that are contaminated by these toxic metabolites when consumed may results in food poisoning. It is main challenge to monitor the microbiological quality of milk to ensure its safety for consumers. In present study on the basis of culturing and biochemical identification, 16 E. coli, 8 Klebsiella spp., 1 Pseudomonas spp., 17 S. aureus, and 6 Streptococcus spp., were detected in mastitis positive and negative milk samples and it was further confirmed by 16S rRNA sequencing. Different bacteria isolates found in both mastitis positive and mastitis negative samples. Bacterial isolates antibiotic resistance profile was checked by antibiotic sensitivity test. In mastitis negative samples bacteria also isolated it means contamination can occur by environment e.g., milk handler, water that used for washing milk contact surfaces. Hands of the milk handler are the main reason affecting microbial quality of raw cow milk. Hence, measures should be taken to improve the attitude and educational status of milk handlers and the quality of water to enhance.

REFERENCES

[1] Dehkordi FS, Borujeni MR, Rahimi E, Abdizadeh R. Detection of Toxoplasma gondii in raw caprine, ovine,

Afreen A et al.,
