Exploring The Effect Of Mutigrain Flour On Glycemic Index Of Diabetic Rats Model

Sehrish Rafique¹, Shaista Jabeen¹, Tabussam Tufail², Huma Bader Ul Ain¹, Rizwan Shoukat¹, Zarina Yasmin²

¹ University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Lahore, Pakistan
² Post-Harvest Research Centre, Ayub Agricultural Research Institute, Faisalabad, Pakistan.

ARTICLE INFO

Key Words:
Multigrain, Diabetes, Glycemic Index, Cereals, Glucose

How to Cite:

*Corresponding Author:
Tabussam Tufail
University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Lahore, Pakistan
tabussam.tufail@dnsc.uol.edu.pk

Received Date: 1st July, 2022
Acceptance Date: 10th July, 2022
Published Date: 31st July, 2022

INTRODUCTION

Poaceae and Gramineae include seeds and grains from cereals. Triticale, oats, rye, maize, and other grains are accessible in various places. Wheat produces nearly half of the world’s cereal production, according to global standards. Various structural similarities are identified across all cereals connected with a foetus with chromosomes for a completely new species, as well as a reproductive apparatus clogged with starch grains [1-3]. Diabetes mellitus is a group of metabolic disorders marked by hyperglycemia as a result of insulin shortage, insulin dysfunction, or both. Diabetes causes long-term damage, malfunction, and acute abnormalities in a variety of organs, including the eyes, kidneys, nerves, heart, and blood vessels [4]. Humans have been eating cereals for a long time. These problems are sensitive to diabetes complications that have been present for a long time, such as insulin-dependent diabetes mellitus (IDDM) and non-insulin-dependent diabetic mellitus (NIDDM), both of which cause significant morbidity [5]. Millets and grains can supply additional minerals, phytochemicals, and antioxidants, all of which are essential for overall health [6]. Utilization of remedial multigrain multigrain flour in food products is an area of current interest because of consumer and changing demographics [7]. Foods with a low glycemic index are linked to better metabolic and vascular disease prevention and treatment [8]. Later research revealed that a variety of parameters linked to food consumption affect the rate of glucose absorption, as well as glycemia and insulinemia. At this point, it was thought that rigorous documenting of the distinctions.

ABSTRACT

The glycemic index is a measure that assesses the quantity of carbohydrates in meals on a range of zero to 100, reflecting how rapidly an item raises blood sugar. Multigrain flour stayed active for eating, and it had greater storage stability. Objective: To evaluate the effect of multigrain flour on glycemic index and insulin levels of diabetic rats. Methods: The current study was designed to evaluate the effect of multigrain flour on diabetes. Sample size was 60 male rats (3 groups were made) 20 in each group and convenient sampling was used. Proximate chemical analysis of the multigrain flour was also done. SPSS version 24.0 was used to tabulate and analyse the data. Results: Highest feed intake at week 1 was (24.10 ± 0.48 g/rat) and highest feed intake at week 4 was (25.80 ± 0.95 g/rat). Highest water intake at week 1 was (21.03 ± 0.51 mL/rat) and highest water intake at week 4 was (25.52 ± 0.54 mL/rat). Highest blood glucose level at 0-day was (177.27 ± 2.40 mg/dL) and highest blood glucose level at 30-day was (149.57 ± 4.51 mg/dL). Highest glycemic index value at week 1 (0-minute) was (136 ± 2.04), highest glycemic index value at week 1 (30-minute) was (165 ± 2.47), highest glycemic index value at week 1 (60-minute) was (165 ± 2.47). Conclusions: This approach is also beneficial in the management of a variety of disorders. The addition of micronutrients to multigrain flour can boost the nutritional content of goods while also extending their shelf life.
between carbohydrate meals was necessary. The glycemic index categorization of foods that resulted gave a numerical physiologic classification of significant carbohydrate items in the prevention and treatment of disorders like diabetes [9]. Many dieticians and endocrinologists have indicated that illnesses are connected to defective feeding patterns caused by a lack of variety and increased intake of wheat and rice-based refined meals, based on observations and scientific evidence. Further research has discovered that high-GI meals cause greater eating problems in obese persons than in people of normal weight. Dieticians recommend millets to fight these side effects because of their high fiber content and vitamin profile, which promote a balanced diet. Multigrain flour, for example, is one of several commercial goods with a high nutritional fibre and protein content that has recently entered the Indian market [10, 11].

**M E T H O D S**

The Current study was designed to evaluate the effect of multigrain flour on diabetes. Convenient sampling was used. This study was conducted at Allied Health Sciences, Lab no.102, University Institute of Diet and Nutritional Sciences(UIDNS), The University of Lahore. Study Duration was 9 months after the approval of synopsis. Sample size was 60 male rats (3 groups were made) 20 in each group were housed in animal room of IMBB, The University of Lahore. Inclusion Criteria was that male Rats having weight of 200-250 g were used as biological model in the study. Exclusion Criteria was that under weight male and female rats were excluded. Rats that were engaged in other experiments were also excluded from the study. Proximate chemical analysis of the multigrain flour was also done. SPSS version 24.0 was used to tabulate and analyse the data[12, 13].

**R E S U L T S**

The inherent composition of food, as well as the proportions of nutrients, determine its quality. The analysis of food components has a considerable impact on the final nutritional content as well as customer approval. The moisture, crude fibre, crude protein, crude fat, and percentage composition of a food sample were determined through compositional analysis. The following table 1 and 2 shows the bioactive composition and proximate composition of multigrain flour. Bioactive compounds in multigrain flour were analyzed by spectrophotometric method and following detections were observed. Anti-oxidant activity (DPPH) was 22.64 ± 0.3 (µmol TE/g), Total phenolic contents (TPC) was 1500 ± 0.5 (mg GAE/100g) and Total flavonoids contents (TFC) was 500±0.7 (µg RE g⁻¹).

Table 1: Bioactive compounds

<table>
<thead>
<tr>
<th>Bioactive compounds</th>
<th>Multigrain flour</th>
<th>Wheat</th>
<th>Oats</th>
<th>Quinoa</th>
<th>Rice</th>
<th>Maize</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moisture contents</td>
<td>21.34± 0.05 (%)</td>
<td>23.23± 0.05 (%)</td>
<td>19.98±0.05 (%)</td>
<td>20.34± 0.05 (%)</td>
<td>20.34± 0.05 (%)</td>
<td>21.34± 0.05 (%)</td>
</tr>
<tr>
<td>Protein contents</td>
<td>17.87± 0.02 (%)</td>
<td>18.77± 0.02 (%)</td>
<td>17.72± 0.02 (%)</td>
<td>18.17± 0.02 (%)</td>
<td>15.23± 0.02 (%)</td>
<td>19.33± 0.02 (%)</td>
</tr>
<tr>
<td>Fat contents</td>
<td>12.12± 0.01 (%)</td>
<td>10.12± 0.01 (%)</td>
<td>10.44± 0.01 (%)</td>
<td>10.15± 0.01 (%)</td>
<td>10.22± 0.01 (%)</td>
<td>11.42± 0.01 (%)</td>
</tr>
<tr>
<td>Ash contents</td>
<td>4.85±0.05 (%)</td>
<td>5.38±0.05 (%)</td>
<td>4.48±0.05 (%)</td>
<td>4.73±0.05 (%)</td>
<td>5.16±0.05 (%)</td>
<td>4.11±0.05 (%)</td>
</tr>
<tr>
<td>Fiber contents</td>
<td>2.98± 0.11 (%)</td>
<td>2.97± 0.11 (%)</td>
<td>3.00± 0.11 (%)</td>
<td>2.99± 0.11 (%)</td>
<td>2.92± 0.11 (%)</td>
<td>3.12± 0.11 (%)</td>
</tr>
<tr>
<td>NFE (%)</td>
<td>41.66± 0.21 (%)</td>
<td>38.52± 0.21 (%)</td>
<td>39.42± 0.21 (%)</td>
<td>41.13± 0.21 (%)</td>
<td>40.86± 0.21 (%)</td>
<td>42.22± 0.21 (%)</td>
</tr>
</tbody>
</table>

Figure 1A indicates the graphical representation of the mean values of the feed intake in different treatments. X-axis indicates the treatments and weeks as the independent variable and y-axis shows the feed intake of rats in milligram as the dependent variable. Figure 1B indicates the graphical representation of the mean values of the water intake in different treatments. X-axis indicates the treatments and weeks as the independent variable and y-axis shows the water intake of rats in milliliter as the dependent variable. Figure 1C indicates the graphical representation of the mean values of the blood glucose level in different treatments. X-axis indicates the treatments and days as the independent variable and y-axis shows the blood glucose level in mg/dL as the dependent variable. Blood sugar level in T2 is highest because in this group, diabetic rats were used. Furthermore, with the passage of time blood sugar level decreased by eating the multigrain. Figure 1D indicates the graphical representation of the mean values of the insulin level in different treatments. X-axis indicates the treatments and days as the independent variable and y-axis shows the insulin level of rats in µ IU/mL as the dependent variable. Insulin level in T2 is highest because in this group, diabetic rats were used and more insulin produced in response to high sugar. Furthermore, with the passage of time insulin level decreased in diabetic rats by eating the multigrain.
**DISCUSSION**

Finally, the physical, chemical, and sensory evaluations of multigrain flour as well as the storage stability of the fortificant produced good findings. Multigrain flour stayed active for eating, and it had greater storage stability [14]. The finest quality multigrain flour may be manufactured along with wheat flour, according to the findings of this study. This will be both nutritional and beneficial to your health. The current study’s findings might be crucial in determining whether or not to fortify straight grade wheat flour with multigrain flour to improve nutrition. The findings of this study may prove to be extremely useful in the development of new, highly nutritious food items. The results of feed and water intake in the study are in similar with the findings of Qi et al., who studied the relationship of diet to type 2 diabetes to cure the patients [15]. The results of the study also matched with the results of Tufail et al., who studied the effect of diet on glycemic index of women [16]. The results of blood glucose level in the study are in similar with the findings of Indrani et al., who studied the glycemic index values [19]. The findings of the study also matched with the results of Liu et al., who studied the effect of oat type 2 diabetes in patients [20].

**CONCLUSION**

Foods that give special health advantages in addition to basic nutrients are referred to as functional foods. They are consumed as a staple meal by around 90% of Pakistan’s population. Wheat, like other grains, is lacking in micronutrients such as zinc, vitamin A, and iron, which can contribute to a variety of significant disorders. Malnutrition is a severe issue in developing and underdeveloped nations, including Pakistan. Micronutrient fortification is becoming a prevalent method in the baking business to enhance people’s health. This approach is also beneficial in the management of a variety of disorders. The addition of micronutrients to multi grain flour can boost the nutritional content of goods while also extending their shelf life. As a result, the current technique was used to test the stability of multigrain flour.

**REFERENCES**


Effect of Multigrain Flour on Glycemic Index in rats


Meynier A, Goux A, Atkinson F, Brack O, Vinoy S. Postprandial glycaemic response: how is it