Male fertility is affected by the frequent andrologic disorder known as idiopathic varicocele, particularly in hypofertile men. By lowering sperm quality and quantity, it affects reproductive potential. Sperm abnormalities including decreased motility, increased atypical forms, the presence of immature cells, and decreased sperm concentration are frequently seen in patients with varicoceles. Additionally, it has been noticed that 20% of people with varicoceles show abnormal spermatogenesis, while 14% of people with this disease who are hypofertile do not have any seminal abnormalities [1, 2]. Due to the lack of exact diagnostic techniques to determine fertility, the issue of treating varicoceles in childhood remains in controversy. Regardless of the severity of the varicocele, current treatment decisions, such as varicocelectomy, are frequently based on detecting a smaller testicular volume on the affected side. Despite the wide range of available treatments, including open surgery, laparoscopy, retroperitoneoscopy, and percutaneous sclerosis, there is still no widely recognized gold standard therapy [1-3]. The preservation of the spermatic artery during the standard laparoscopic surgery of ligating spermatic arteries regularly presents medical professionals with challenges. The quality of spermiograms or the vascularization of the testicles, it is thought, may not be negatively impacted by internal inguinal ring ligation [3]. The most frequent reason for male infertility is varicocele, which is frequently reversible or improvable using a variety of surgical and non-surgical methods.
radiological procedures. Of male infertile with azoospermia, 5–10% have a clinical diagnosis. Varicocele repair (VR) has been shown to improve sperm concentration, motility, and morphology in oligozoospermic males, but further research is needed to determine how it affects testicular histological changes in nonobstructive azoospermia (NOA) cases. Being a father is strongly correlated with effective microscopic testicular sperm extraction (micro-TESE) and intracytoplasmic sperm injection (ICSI) in NOA-affected men [4]. However, ICSI only produces successful pregnancies in a small percentage of NOA instances. In 30–50% of couples where the male partner has NOA and spermatozoa have been detected on testicular biopsy, pregnancies and live births are accomplished. As a result, additional therapies are required to enhance sperm quality, sperm recovery chances, and testicular tissue repair [5]. Within the scope of this investigation, we sought to articulate our hands-on experience and understanding pertaining to varicocele.

METHODS
This study included patients who presented to our clinic due to varicocele and underwent surgical procedures between November 2020 and January 2023. Patients with incomplete or inadequate data were excluded from the study. Data such as age, side, preoperative spermogram parameters, preoperative ultrasound findings, and the number of veins ligated during surgery were recorded through the retrospective screening of patient files. Additionally, the recurrence rate was recorded and analyzed. All patients who presented to our clinic with symptoms of scrotal swelling and/or pain underwent a thorough history taking and physical examination. For all patients where there was a suspicion of varicocele based on the physical examination, a spermogram, and an ultrasonography scan were requested. Surgical intervention was planned as necessary for relevant patients. A transverse skin incision measuring three centimeters is made over the external ingunal ring and continues until it reaches the Scarpa fascia. The index finger is then used to dissect the Scarpa fascia. Following the securing of the cord structures with an army-navy retractor, the Babcock clamp is used to grip the cord structures. Incisions are made in the external spermatic fascia with the assistance of a surgical microscope, and 4-0 ties are used to ligate all of the veins that are located within the spermatic cord as shown in the Figure 1 [6].

RESULTS
This study consisted 26 patients with varicocele. Table 1 indicates the average age of the patients was 27.5 ± 8.55 years. Varicocele was found predominantly on the left side in 22 patients (85%), while it was bilateral in 4 patients (15%). The mean vein diameter on the left side was 3.58 ± 0.90mm. For the patients with bilateral varicocele, the average vein diameter was 2.6 ± 0.31mm. The average vein diameter for all cases was 3.46 ± 0.91mm. Analysis of the spermograms showed an average sperm count of 32.6 ± 36.2 million/ml, sperm motility was at an average of 23.2 ± 17.7%, and the average normal sperm morphology was found to be 5.23 ± 11.6%. The average number of veins ligated during surgery was 4.40 ± 1.71 on the left side and 4.75 ± 1.26 for bilateral cases. The average for all cases was 4.45 ± 1.64. A complication occurred in one patient during the procedure. In the patient who experienced the complication, about 85% of the testicular blood supply was lost. For this patient, no blood flow was detected in the postoperative ultrasound.
scan, and it was observed that the testicle had hardened but no atrophy had occurred. The patient continues to attend routine check-ups. Out of the 26 patients, recurrence was observed in 2 patients, representing a recurrence rate of 7.6% (one of them from right and one from the left).

Table 1: Patients demographics

<table>
<thead>
<tr>
<th>Variables</th>
<th>n(%) or Mean (SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>27.5±8.55</td>
</tr>
<tr>
<td>Side</td>
<td></td>
</tr>
<tr>
<td>Left</td>
<td>22(85%)</td>
</tr>
<tr>
<td>Bilateral</td>
<td>4(15%)</td>
</tr>
<tr>
<td>Vein diameter</td>
<td></td>
</tr>
<tr>
<td>Left</td>
<td>3.58±0.90</td>
</tr>
<tr>
<td>Bilateral</td>
<td>2.6±0.31</td>
</tr>
<tr>
<td>All cases</td>
<td>3.46±0.91</td>
</tr>
<tr>
<td>Spermogram</td>
<td></td>
</tr>
<tr>
<td>Count (M/mL)</td>
<td>32.6±36.2</td>
</tr>
<tr>
<td>Sperm motility (%)</td>
<td>23.2±17.7</td>
</tr>
<tr>
<td>Sperm morphology (%)</td>
<td>5.23±11.6</td>
</tr>
<tr>
<td>Number of ligated veins</td>
<td></td>
</tr>
<tr>
<td>Left</td>
<td>4.40±1.71</td>
</tr>
<tr>
<td>Bilateral</td>
<td>4.75±1.26</td>
</tr>
<tr>
<td>All cases</td>
<td>4.46±1.64</td>
</tr>
<tr>
<td>Complication</td>
<td>1(3.8%)</td>
</tr>
<tr>
<td>Recurrence</td>
<td>2(7.6%)</td>
</tr>
</tbody>
</table>

As shown in Figure 2, negative correlation was found between the number of veins ligated during surgery and the number of sperm detected during the spermogram in the preoperative period (p=0.043, r=-0.408).

Figure 2: Negative correlation between the number of veins ligated during surgery (x) and the number of sperm (y)

In Figure 2, a positive correlation was found between the vein diameter and the sperm morphology detected during the spermogram in the preoperative period (p=0.004, r=0.544).

Figure 3: Positive correlation between the vein diameter (x) and the sperm morphology (y)

DISCUSSION

Since the first varicoceolectomy was demonstrated to improve semen parameters in 1952 [7], researchers have extensively tested this surgery. Numerous investigations, some of which were randomized clinical trials, revealed general improvements following surgery and offered strong support for the course of treatment. In one meta-analysis, total motility increased by 10.86% (95% CI, 7.07-14.65; p = 0.0001), progressive motility increased by 9.69% (95% CI, 4.86-14.52; p = 0.003), and sperm concentration increased by 12.32 million sperm per milliliter (95% CI, 9.45-15.19; p = 0.0001), respectively [8]. Our study involving 26 varicoceole patients provides several insightful findings which can further contribute to the body of knowledge regarding varicoceole management. Varicoceole, often left-sided due to anatomical reasons, was observed predominantly on the left side in 85% of our study population, a finding consistent with previous literature [4, 8]. Additionally, 15% of our patients presented with bilateral varicoceole, reiterating the importance of thorough examination in clinical practice to determine the extent and severity of the condition. The mean vein diameters we found, both in unilateral and bilateral cases, underline the considerable variation in the anatomy of varicoceles. This underscores the need for individualized approach to each case, as varicoceles are not uniform in presentation or severity. Regarding fertility parameters, the spermogram analysis reflects a critical concern surrounding varicoceole: its potential detrimental impact on sperm parameters [9].
The average sperm count, motility, and morphology in our study suggest a range of effects on spermatogenesis. However, the complexity of this relationship warrants further investigation, given the wide range of reported parameters. Our study identified a negative correlation between the number of ligated veins and preoperative sperm count. This suggests that the more extensive the varicocele (reflected by a larger number of ligated veins), the more likely it is to affect sperm production, potentially due to increased testicular temperature or venous pressure. However, the negative impact on sperm count could be mitigated with surgical intervention, emphasizing the role of timely and appropriate surgical management in preserving fertility. Interestingly, we observed a positive correlation between vein diameter and preoperative sperm morphology. This potentially indicates that larger veins, possibly indicative of more severe varicocele, could result in a higher incidence of abnormal sperm morphology. This again stresses the importance of early detection and intervention to prevent or minimize any detrimental effects on sperm quality. The testicular artery can be preserved (3.5–20%), and the laparoscopic method has the benefit of isolating internal spermatic veins close to the left renal vein. Air embolism, unintentional arterial division, genitofemoral nerve injury, hydrocele, intestinal injury, and peritonitis are the most significant side effects of laparoscopic varicocelectomy and occur in 8–12% of patients [10]. We encountered one severe complication during our study: a significant loss of testicular blood supply in a patient during surgery. This unfortunate incident emphasizes the need for meticulous surgical technique and careful perioperative management in order to prevent such complications. Fortunately, this patient did not develop testicular atrophy, demonstrating the remarkable resilience and regenerative potential of testicular tissue. According to some authors, gubernacular veins, which are present in 71–79% of cases and are thought to be the cause of postoperative relapses, should be surgically ligated during microsurgical varicocelectomy in order to prevent this problem [11, 12]. By comparing varicocelectomy with and without the delivery of testis, Ramasamy and Schlegel found no appreciable differences in the rate of recurrence following the ligation or non-ligation of gubernacular veins [12]. The recurrence rate in our study was relatively low (7.6%), suggesting that surgical treatment for varicocele in our clinical practice is generally successful. However, recurrence underlines the need for careful postoperative follow-up and possibly the exploration of adjunctive treatments to improve outcomes. The laparoscopic method provides better visibility of vessels and vas deferens with a low recurrence rate (approximately 3%, 1%–14%) [13–17]. However, it carries a risk of testicular atrophy if vasectomy is performed later. Scrotal antegrade sclerotherapy (SAS), first described by Tauber and Johnsen in the 1990s, has a recurrence rate of 10%–15% but a low hydrocele rate [18, 19]. In the study of Chung et al., [20] 113 patients underwent scrotal antegrade sclerotherapy (n=57) or laparoscopic Palomo surgery (n=56) for varicocele. Both groups had significantly smaller testes before surgery. At the 12-month follow-up, no significant differences in clinical recurrences were found between the two groups.

CONCLUSIONS

Despite the limitations, our study provides valuable insights into the relationship between varicocele severity and sperm parameters. Further research with larger sample sizes and a focus on various influencing factors is needed to enhance our understanding of varicocele management.

Authors Contribution

Conceptualization: SS
Methodology: SS, MA
Formal Analysis: SS, MA
Writing-review and editing: SS, MA

All authors have read and agreed to the published version of the manuscript.

Conflicts of Interest

The authors declare no conflict of interest.

Source of Funding

The authors received no financial support for the research, authorship and/or publication of this article.

REFERENCES

