Sesquiterpene Lactones as Potential G1/S Phase Cell Cycle Inhibitors: A Molecular Docking Study
Sesquiterpene Lactones as Potential Cell Cycle Inhibitors
DOI:
https://doi.org/10.54393/pbmj.v6i08.925Keywords:
Cyclin D1/ CDK4-CDK6, E2F-2, Sesquiterpene Lactones, Molecular Docking, Cell Cycle ArrestAbstract
Cell cycle checkpoints play a crucial role in cell division by monitoring the orderly progression of each phase, ensuring accurate completion before advancing to the next stage. They act as quality control mechanisms, pausing the cell cycle when optimal conditions are not met, thereby preventing errors during cell division. Objective: To discover Sesquiterpene Lactones (SLs) as inhibitory compounds targeting Cyclin D1/Cyclin Dependent Kinase 4 (CDK4)- Cyclin Dependent kinase 6 (CDK6) complex and Eukaryotic Transcription Factor 2 protein (E2F-2). Methods: The inhibitory potential of SLs, namely ilicol, eucalyptone, and ascleposide E, was investigated using molecular docking analysis. The docking and visualization of ligand-protein complexes were performed using MGL Tools version 1.5.7, BIOVIA Discovery Studio version 21.1.0, and PyMol version 2.5.2. Additionally, drug likeness and pharmacokinetic properties of SLs were assessed via pkCSM and ADMET analysis. Results: Findings demonstrate that ilicol exhibit most favourable complex with CDK6 having binding energy of –7.8 kCal/mol and inhibition constant 1.81 μM. The visualization of ligand-receptor complexes reveals substantial hydrogen bonding interactions. Conclusions: Current study revealed that novel SLs show favourable drug likeness and promising ADMET profile along with strong inhibitory effect on G1/S regulatory proteins. The potency of SLs is in order of ilicol> ascleposide E>eucalyptone. To further validate the inhibitory effect of ilicol, implementation of comprehensive in vitro and in vivo investigations must be employed for progression of its development as a novel anti-cancer therapeutic.
References
Khan M, Maryam A, Zhang H, Mehmood T, Ma T. Killing cancer with platycodin D through multiple mechanisms. Journal of Cellular and Molecular Medicine. 2016 Mar; 20(3): 389-402. doi: 10.1111/jcmm.12749. DOI: https://doi.org/10.1111/jcmm.12749
Akçay Nİ, Nagy B, Tüzmen Ş. Reaction systems for modeling and validation of biological signaling pathways: G1/s checkpoint of the cell cycle. Acta Polytechnica Hungarica. 2021 Jan; 18(6): 7-23. doi: 10.12700/APH.18.6.2021.6.1. DOI: https://doi.org/10.12700/APH.18.6.2021.6.1
Fischer M, Schade AE, Branigan TB, Müller GA, DeCaprio JA. Coordinating gene expression during the cell cycle. Trends in Biochemical Sciences. 2022 Dec; 47(12): 1009-1022. doi: 10.1016/j.tibs.2022.06.007. DOI: https://doi.org/10.1016/j.tibs.2022.06.007
Hassan SH, Gul S, Zahra HS, Maryam A, Shakir HA, Khan M, et al. Alpha solanine: A novel natural bioactive molecule with anticancer effects in multiple human malignancies. Nutrition and Cancer. 2021 Aug; 73(9): 1541-52. doi: 10.1080/01635581.2020.1803932. DOI: https://doi.org/10.1080/01635581.2020.1803932
Nardone V, Barbarino M, Angrisani A, Correale P, Pastina P, Cappabianca S, et al. CDK4, CDK6/cyclin-D1 complex inhibition and radiotherapy for cancer control: a role for autophagy. International Journal of Molecular Sciences. 2021 Aug; 22(16): 8391. doi: 10.3390/ijms22168391. DOI: https://doi.org/10.3390/ijms22168391
Limas JC and Cook JG. Preparation for DNA replication: the key to a successful S phase. FEBS Letters. 2019 Oct; 593(20): 2853-67. doi: 10.1002/1873-3468.13619. DOI: https://doi.org/10.1002/1873-3468.13619
Goel S, Bergholz JS, Zhao JJ. Targeting CDK4 and CDK6 in cancer. Nature Reviews Cancer. 2022 Jun; 22(6): 356-72. doi: 10.1038/s41568-022-00456-3. DOI: https://doi.org/10.1038/s41568-022-00456-3
Xiong Y, Li T, Assani G, Ling H, Zhou Q, Zeng Y, et al. Ribociclib, a selective cyclin D kinase 4/6 inhibitor, inhibits proliferation and induces apoptosis of human cervical cancer in vitro and in vivo. Biomedicine & Pharmacotherapy. 2019 Apr; 112: 108602. doi: 10.1016/j.biopha.2019.108602. DOI: https://doi.org/10.1016/j.biopha.2019.108602
Newman DJ and Cragg GM. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. Journal of Natural Products. 2020 Mar; 83(3): 770-803. doi: 10.1021/acs.jnatprod.9b01285. DOI: https://doi.org/10.1021/acs.jnatprod.9b01285
Khan M, Maryam A, Qazi JI, Ma T. Targeting apoptosis and multiple signaling pathways with icariside II in cancer cells. International Journal of Biological Sciences. 2015 Jul; 11(9): 1100. doi: 10.7150/ijbs.11595. DOI: https://doi.org/10.7150/ijbs.11595
Pezzani R, Salehi B, Vitalini S, Iriti M, Zuñiga FA, Sharifi-Rad J, et al. Synergistic effects of plant derivatives and conventional chemotherapeutic agents: an update on the cancer perspective. Medicina. 2019 Apr 17;55(4):110. doi: 10.3390/medicina55040110. DOI: https://doi.org/10.3390/medicina55040110
Gou J, Hao F, Huang C, Kwon M, Chen F, Li C, Liu C, Ro DK, Tang H, Zhang Y. Discovery of a non‐stereoselective cytochrome P450 catalyzing either 8α‐or 8β‐hydroxylation of germacrene A acid from the Chinese medicinal plant, Inula hupehensis. The Plant Journal. 2018 Jan; 93(1): 92-106. doi: 10.1111/tpj.13760. DOI: https://doi.org/10.1111/tpj.13760
Shams A, Ahmed A, Khan A, Khawaja S, Rehman NU, Qazi AS, et al. Naturally Isolated Sesquiterpene Lactone and Hydroxyanthraquinone Induce Apoptosis in Oral Squamous Cell Carcinoma Cell Line. Cancers. 2023 Jan; 15(2): 557. doi: 10.3390/cancers15020557. DOI: https://doi.org/10.3390/cancers15020557
Fan J, Fu A, Zhang L. Progress in molecular docking. Quantitative Biology. 2019 Jun; 7: 83–89. doi: 10.1016/bs.pmch.2021.01.004. DOI: https://doi.org/10.1007/s40484-019-0172-y
Stanzione F, Giangreco I, Cole JC. Use of molecular docking computational tools in drug discovery. Progress in Medicinal Chemistry. 2021 Jan; 60: 273-343. doi: 10.1016/bs.pmch.2021.01.004. DOI: https://doi.org/10.1016/bs.pmch.2021.01.004
Kar S and Leszczynski J. Open access in silico tools to predict the ADMET profiling of drug candidates. Expert Opinion on Drug Discovery. 2020 Dec; 15(12): 1473-87. doi: 10.1080/17460441.2020.1798926. DOI: https://doi.org/10.1080/17460441.2020.1798926
Beck TC, Springs K, Morningstar JE, Mills C, Stoddard A, Guo L, et al. Application of Pharmacokinetic Prediction Platforms in the Design of Optimized Anti-Cancer Drugs. Molecules. 2022 Jun; 27(12): 3678. doi: 10.3390/molecules27123678. DOI: https://doi.org/10.3390/molecules27123678
Hamzeloo-Moghadam M, Aghaei M, Madi MH, Fallahian F. Anticancer activity of britannin through the downregulation of cyclin D1 and CDK4 in human breast cancer cells. Journal of Cancer Research and Therapeutics. 2019 Jul; 15(5): 1105-8. doi: 10.4103/jcrt.JCRT_517_17. DOI: https://doi.org/10.4103/jcrt.JCRT_517_17
Zhang YF, Zhang ZH, Li MY, Wang JY, Xing Y, Ri M, et al. Britannin stabilizes T cell activity and inhibits proliferation and angiogenesis by targeting PD-L1 via abrogation of the crosstalk between Myc and HIF-1α in cancer. Phytomedicine. 2021 Jan; 81: 153425. doi: 10.1016/j.phymed.2020.153425. DOI: https://doi.org/10.1016/j.phymed.2020.153425
Khan M, Li T, Ahmad Khan MK, Rasul A, Nawaz F, Sun M, et al. Alantolactone induces apoptosis in HepG2 cells through GSH depletion, inhibition of STAT3 activation, and mitochondrial dysfunction. BioMed Research International. 2013 Oct; 2013: 719858. doi: 10.1155/2013/719858. DOI: https://doi.org/10.1155/2013/719858
Zhao P, Pan Z, Luo Y, Zhang L, Li X, Zhang G, et al. Alantolactone induces apoptosis and cell cycle arrest on lung squamous cancer SK‐MES‐1 cells. Journal of Biochemical and Molecular Toxicology. 2015 May; 29(5): 199-206. doi: 10.1002/jbt.21685. DOI: https://doi.org/10.1002/jbt.21685
Yao Y, Xia D, Bian Y, Sun Y, Zhu F, Pan B, et al. Alantolactone induces G1 phase arrest and apoptosis of multiple myeloma cells and overcomes bortezomib resistance. Apoptosis. 2015 Aug; 20: 1122-33. doi: 10.1007/s10495-015-1140-2. DOI: https://doi.org/10.1007/s10495-015-1140-2
Qu Z, Lin Y, Mok DK, Bian Q, Tai WC, Chen S. Brevilin A, a natural sesquiterpene lactone inhibited the growth of triple-negative breast cancer cells via Akt/mTOR and STAT3 signaling pathways. OncoTargets and Therapy. 2020 Jun; 13: 5363-73. doi: 10.2147/OTT.S256833. DOI: https://doi.org/10.2147/OTT.S256833
Lipinski CA. Lead-and drug-like compounds: the rule-of-five revolution. Drug discovery today: Technologies. 2004 Dec; 1(4): 337-41. doi: 10.1016/j.ddtec.2004.11.007. DOI: https://doi.org/10.1016/j.ddtec.2004.11.007
Shultz MD. Two decades under the influence of the rule of five and the changing properties of approved oral drugs: miniperspective. Journal of Medicinal Chemistry. 2018 Sep; 62(4): 1701-14. doi: 10.1021/acs.jmedchem.8b00686. DOI: https://doi.org/10.1021/acs.jmedchem.8b00686
Kuang Y, Shen W, Ma X, Wang Z, Xu R, Rao Q, Yang S. In silico identification of natural compounds against SARS-CoV-2 main protease from Chinese Herbal Medicines. Future Science OA. 2023 May; 9(7): FSO873. doi: 10.2144/fsoa-2023-0055. DOI: https://doi.org/10.2144/fsoa-2023-0055
Nguyen TT, Duong VA, Maeng HJ. Pharmaceutical formulations with P-glycoprotein inhibitory effect as promising approaches for enhancing oral drug absorption and bioavailability. Pharmaceutics. 2021 Jul; 13(7): 1103. doi: 10.3390/pharmaceutics13071103. DOI: https://doi.org/10.3390/pharmaceutics13071103
Llorach-Pares L, Nonell-Canals A, Sanchez-Martinez M, Avila C. Computer-aided drug design applied to marine drug discovery: Meridianins as Alzheimer’s disease therapeutic agents. Marine Drugs. 2017 Nov; 15(12): 366. doi: 10.3390/md15120366. DOI: https://doi.org/10.3390/md15120366
Dharmasaputra A and Rasyida AU. Azasterol Inhibition and Pharmacokinetic Effects on Thymidylate Synthase-Dihydrofolate Reductase from T. gondii: In Silico Study. Pharmacognosy Journal. 2022 Jun; 14(3): 571-75. doi: 10.5530/pj.2022.14.73. DOI: https://doi.org/10.5530/pj.2022.14.73
Wahyuningsih D, Purnomo Y, Tilaqza A. In Silico study of Pulutan (Urena lobata) leaf extract as anti-inflammation and their ADME prediction. Journal of Tropical Pharmacy and Chemistry. 2022 Jun; 6(1): 30-37. doi: 10.25026/jtpc.v6i1.323. DOI: https://doi.org/10.25026/jtpc.v6i1.323
Muhammad S, Hassan SH, Al-Sehemi AG, Shakir HA, Khan M, Irfan M, Iqbal J. Exploring the new potential antiviral constituents of Moringa oliefera for SARS-COV-2 pathogenesis: An in silico molecular docking and dynamic studies. Chemical Physics Letters. 2021 Mar; 767: 138379. doi: 10.1016/j.cplett.2021.138379. DOI: https://doi.org/10.1016/j.cplett.2021.138379
Zhou SF. Drugs behave as substrates, inhibitors and inducers of human cytochrome P450 3A4. Current Drug Metabolism. 2008 May; 9(4): 310-22. doi: 10.2174/138920008784220664. DOI: https://doi.org/10.2174/138920008784220664
Bucao XE and Solidum JN. In Silico Evaluation of Antidiabetic Activity and ADMET Prediction of Compounds from Musa acuminata Colla Peel. Philippine Journal of Science. 2022 Feb; 1: 171-92. doi: 10.56899/151.01.13. DOI: https://doi.org/10.56899/151.01.13
Flores‐Holguín N, Frau J, Glossman‐Mitnik D. Computational Pharmacokinetics Report, ADMET Study and Conceptual DFT‐Based Estimation of the Chemical Reactivity Properties of Marine Cyclopeptides. ChemistryOpen. 2021 Nov; 10(11): 1142-9. doi: 10.1002/open.202100178. DOI: https://doi.org/10.1002/open.202100178
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Pakistan BioMedical Journal
This work is licensed under a Creative Commons Attribution 4.0 International License.
This is an open-access journal and all the published articles / items are distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. For comments editor@pakistanbmj.com