Phase-dependent expression profiling and quantification of several growth factors in liver regeneration after partial hepatectomy

Growth factors in liver regeneration

Authors

  • Adeela Hussain Center of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
  • Gibran Ali Institute of Regenerative Medicine, Physiology and Cell biology Department, University of Health Sciences, Lahore, Pakistan
  • Muhammad Awais Afzal Center of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
  • Asima Tayyeb School of Biological Sciences, University of the Punjab, Lahore, Pakistan
  • Shehla J Akram Akram Medical Complex, Lahore, Pakistan
  • Javed Akram Institute of Regenerative Medicine, Physiology and Cell biology Department, University of Health Sciences, Lahore, Pakistan

DOI:

https://doi.org/10.52229/pbmj.v3i2.16

Abstract

Growth factors are the potential operational members which control different phases of liver regeneration. Different growth factors have expression regulation in the whole process relating to different phases of liver regeneration. Objective: To assess the expression regulation of different growth factors and cytokines involved in liver regeneration in a phase-dependent manner. Methods: Blood and liver samples were collected and analyzed on 1st, 3rd, 5th, 7th and 14th postoperative days after 50% Partia hepatectomy (PHx). Results: Steady increase of liver regeneration rate was recorded from 90.8% (1st day) to 97.9% (7th day). Liver function tests further confirmed the steady liver recovery in PHx mice. Several growth factors such as HGF and VEGF exhibited an up-regulation till 5th day and later gradual decrease till 14th day compared to control mice. Albumin, CK18 and CK19 showed sequential expression increase from 1st to 14th day compared to AFP and HNF-4α upregulated until 5th and 1st day, respectively. Quantification of these growth factors further confirm our results. Conclusions: Conclusively, these results highlight a phase-dependent regulation and role of growth factors in liver regeneration and recovery

References

Taub, R. (2004). Liver regeneration: from myth to mechanism. Nature Reviews Molecular Cell Biology 5(10): 836-847.

Riehle, K. J., Dan, Y. Y., Campbell, J. S., & Fausto, N. (2011). New concepts in liver regeneration. Journal of Gastroenterology and Hepatology 26: 203-212.

Anderson, R. (1931). Experimental pathology of the liver. I. Restoration of the liver of the white rat following partial surgical removal. Arch Pathot, 12: 186-202.

Mitchell, C., & Willenbring, H. (2008). A reproducible and well-tolerated method for 2/3

partial hepatectomy in mice. Nature Protocols 3(7): 1167-1170.

Kang, L.-I., Mars, W. M., & Michalopoulos, G. K. (2012). Signals and cells involved in regulating liver regeneration. Cells 1(4): 1261-1292.

Yin, S., Wang, H., Park, O., Wei, W., Shen, J., & Gao, B. (2011). Enhanced Liver Regeneration in IL-10–Deficient Mice after Partial Hepatectomy via Stimulating Inflammatory Response and Activating Hepatocyte STAT3. The American Journal of Pathology 178(4): 1614-1621.

Fausto, N. (2000). Liver regeneration. Journal of Hepatology 32: 19-31.

Furchtgott, L. A., Chow, C. C., & Periwal, V. (2009). A model of liver regeneration.

Biophysical Journal 96(10): 3926-3935.

Kim, K., Ohashi, K., Utoh, R., Kano, K., & Okano, T. (2012). Preserved liver-specific

functions of hepatocytes in 3D co-culture with endothelial cell sheets. Biomaterials 33(5): 1406-1413.

Böhm, F., Köhler, U. A., Speicher, T., & Werner, S. (2010). Regulation of liver regeneration by growth factors and cytokines. EMBO Molecular Medicine 2(8): 294-305.

Nejak-Bowen, K., Orr, A., Bowen Jr, W. C., & Michalopoulos, G. K. (2013). Conditional

genetic elimination of hepatocyte growth factor in mice compromises liver regeneration after partial hepatectomy. PloS One 8(3): e59836.

Gu, Y., Sowa, J.-P., Paul, A., Gerken, G., & Schlaak, J. F. (2013). Vascular Endothelial

Growth Factor Improves Liver Regeneration and Survival after 90% Hepatectomy in a Rat Model of Diet-Induced Steatosis. Digestion 88(4): 235-242.

Lehwald, N., Duhme, C., Wildner, M., Kuhn, S., Fürst, G., Forbes, S. J., Schmelzle, M.

(2014). HGF and SDF‐1‐mediated mobilization of CD133+ BMSC for hepatic regeneration following extensive liver resection. Liver International 34(1): 89-101.

Riehle, K. J., Haque, J., McMahan, R. S., Kavanagh, T. J., Fausto, N., & Campbell, J. S.

(2013). Sustained Glutathione Deficiency Interferes with the Liver Response to TNF-α and Liver. 1(2): 1000105.

Tarlow, B. D., Finegold, M. J., & Grompe, M. (2014). Clonal tracing of Sox9+ liver progenitors in mouse oval cell injury. Hepatology 60: 278-289.

Mitchell, C., & Willenbring, H. (2014). Addendum: A reproducible and well-tolerated method for 2/3 partial hepatectomy in mice. Nature Protocols 9(6).

Kremer, M., Son, G., Zhang, K., Moore, S. M., Norris, A., Manzini, G., Hines, I. N. (2014). Smad3 signaling in the regenerating liver: implications for the regulation of IL‐6 expression. Transplant International 27(7): 748-758.

Tralhão, J. G., Abrantes, A. M., Hoti, E., Oliveiros, B., Cardoso, D., Faitot, F., Castro‐Sousa, F. (2013). Hepatectomy and liver regeneration: from experimental research to clinical application. ANZ Journal of Surgery 84(9): 665-671.

Uda, Y., Hirano, T., Son, G., Iimuro, Y., Uyama, N., Yamanaka, J., Fujimoto, J. (2013). Angiogenesis is crucial for liver regeneration after partial hepatectomy. Surgery 153(1): 70-77.

Fausto, N., Campbell, J. S., & Riehle, K. J. (2006). Liver regeneration. Hepatology 43(S1): S45-S53.

Michalopoulos, G. K. (2007). Liver regeneration. Journal of Cellular Physiology 213(2): 286-300.

Michalopoulos, G. K. (2010). Liver regeneration after partial hepatectomy: critical analysis of mechanistic dilemmas. The American Journal of Pathology 176(1): 2-13.

Mastellos, D. C., DeAngelis, R. A., & Lambris, J. D. (2013). Inducing and Characterizing

Liver Regeneration in Mice: Reliable Models, Essential “Readouts” and Critical Perspectives. Current Protocols in Mouse Biology: 3(3): 141-170.

Malato, Y., Sander, L. E., Liedtke, C., Al‐Masaoudi, M., Tacke, F., Trautwein, C., & Beraza, N. (2008). Hepatocyte‐specific inhibitor‐of‐kappaB‐kinase deletion triggers the innate immune response and promotes earlier cell proliferation during liver regeneration. Hepatology 47(6): 2036-2050.

Yokoyama, Y., Nagino, M., & Nimura, Y. (2007). Mechanisms of hepatic regeneration following portal vein embolization and partial hepatectomy: a review. World Journal of Surgery 31(2): 367-374.

Panasyuk, G., Patitucci, C., Espeillac, C., & Pende, M. (2013). The role of the mTOR pathway during liver regeneration and tumorigenesis. Annales d'endocrinologie (Paris) 74(2): 121-122.

Ruoslahti, E., Pihko, H., & Seppälä, M. (2006). Alpha‐fetoprotein: Immunochemical Purification and Chemical Properties. Expression in Normal State and in Malignant and non‐Malignant Liver Disease. Immunological Reviews 20(1): 38-60.

Fausto, N. (2004). Liver regeneration and repair: hepatocytes, progenitor cells, and stem cells. Hepatolog 39(6): 1477-1487.

Kuhlmann, W. D., & Peschke, P. (2006). Hepatic progenitor cells, stem cells, and AFP

expression in models of liver injury. International Journal of Experimental Pathology 87(5): 343-359.

Espejel, S., Roll, G. R., McLaughlin, K. J., Lee, A. Y., Zhang, J. Y., Laird, D. J., Willenbring, H. (2010). Induced pluripotent stem cell–derived hepatocytes have the functional and proliferative capabilities needed for liver regeneration in mice. The Journal of Clinical Investigation 120(9): 3120-3126.

Schievenbusch, S., Schrammel, T., Goeser, T., & Nierhoff, D. (2011). Neighbor of Punc E11 in the Mdr2-/-mouse model: Novel marker of stem/progenitor cells in regenerating adult liver. Paper presented at the Journal of Stemcells and Regenerative medicine 8(2 Special issue).

Eyken, P., & Desmet, V. J. (2008). Cytokeratins and the liver. Liver 13(3): 113-122.

Yilmaz, Y. (2009). Systematic review: caspase‐cleaved fragments of cytokeratin 18–the

promises and challenges of a biomarker for chronic liver disease. Alimentary Pharmacology & Therapeutics 30(11‐12): 1103-1109.

Zhao, W., Li, J.-J., Cao, D.-Y., Li, X., Zhang, L.-Y., He, Y., Dou, K.-F. (2012). Intravenous injection of mesenchymal stem cells is effective in treating liver fibrosis. World Journal of Gastroenterology: WJG 18(10): 1048.

Costa, R. H., Kalinichenko, V. V., Holterman, A. X. L., & Wang, X. (2003). Transcription factors in liver development, differentiation, and regeneration. Hepatology 38(6): 1331-1347.

Kang, X., Song, Z., McClain, C. J., Kang, Y. J., & Zhou, Z. (2008). Zinc supplementation enhances hepatic regeneration by preserving hepatocyte nuclear factor-4α in mice subjected to long-term ethanol administration. The American Journal of Pathology 172(4): 916-925.

Tomizawa, M., Shinozaki, F., Motoyoshi, Y., Sugiyama, T., Yamamoto, S., & Sueishi, M. (2014). Growth Factors and Transcription Factors in Liver Regeneration. JSM 2(1): 1006.

White, P., Brestelli, J. E., Kaestner, K. H., & Greenbaum, L. E. (2005). Identification of transcriptional networks during liver regeneration. Journal of Biological Chemistry 280(5): 3715-3722.

Hayhurst, G. P., Strick-Marchand, H., Mulet, C., Richard, A. F., Morosan, S., Kremsdorf, D., & Weiss, M. C. (2008). Morphogenetic competence of HNF4 alpha-deficient mouse hepatic cells. J Hepatol. 49(3): 384-395.

Laurent, T., Murase, D., Tsukioka, S., Matsuura, T., Nagamori, S., & Oda, H. (2012). A novel human hepatoma cell line, FLC‐4, exhibits highly enhanced liver differentiation functions through the three‐dimensional cell shape. Journal of Cellular Physiology 227(7): 2898-2906.

Jin, C.-X., Samuelson, L., Cui, C.-B., Sun, Y.-Z., & Gerber, D. A. (2013). The combination of epidermal growth factor and glycogen synthase kinase 3 inhibitor support long term self renewal of Sca-1 positive hepatic progenitor cells from normal adult mice. Stem Cell Discovery 3: 180.

Oyagi, S., Hirose, M., Kojima, M., Okuyama, M., Kawase, M., Nakamura, T., Yagi, K.

(2006). Therapeutic effect of transplanting HGF-treated bone marrow mesenchymal cells into CCl4-injured rats. Journal of Hepatology 44(4): 742-748.

Jia, C. (2011). Advances in the regulation of liver regeneration. Expert review of Gastroenterology & Hepatology 5(1): 105-121.

Paranjpe, S., Bowen, W. C., Bell, A. W., Nejak‐Bowen, K., Luo, J. H., & Michalopoulos, G. K. (2007). Cell cycle effects resulting from inhibition of hepatocyte growth factor and its receptor c‐Met in regenerating rat livers by RNA interference. Hepatology 45(6): 1471-1477.

Fafalios, A., Ma, J., Tan, X., Stoops, J., Luo, J., DeFrances, M. C., & Zarnegar, R. (2011). A hepatocyte growth factor receptor (Met)-insulin receptor hybrid governs hepatic glucose metabolism. Nature Medicine 17(12): 1577-1584.

D'Alessandro, L., Meyer, C., Hengstler, J., Klingmüller, U., Höhme, S., el Kariem, S., Drasdo, D. (2014). P117 Holistic approach to unravel functions and regulation of HGF in

liver regeneration. Journal of Hepatology 60(1): S105.

Michalopoulos, G. K. (2013). Principles of liver regeneration and growth homeostasis.

Comprehensive Physiology 3(1): 485-513.

Sanz, S., Pucilowska, J., Liu, S., Rodriguez-Ortigosa, C. M., Lund, P., Brenner, D., Martinez-Chantar, M. L. (2005). Expression of insulin-like growth factor I by activated hepatic stellate cells reduces fibrogenesis and enhances regeneration after liver injury. Gut 54(1): 134-141.

Kraizer, Y., Mawasi, N., Seagal, J., Paizi, M., Assy, N., & Spira, G. (2001). Vascular endothelial growth factor and angiopoietin in liver regeneration. Biochemical and Biophysical Research Communications 287(1): 209-215.

Taniguchi, E., Sakisaka, S., Matsuo, K., Tanikawa, K., & Sata, M. (2001). Expression and role of vascular endothelial growth factor in liver regeneration after partial hepatectomy in rats. Journal of Histochemistry & Cytochemistry 49(1): 121-129.

Shimizu, H., Miyazaki, M., Wakabayashi, Y., Mitsuhashi, N., Kato, A., Ito, H., Nakajima, N. (2001). Vascular endothelial growth factor secreted by replicating hepatocytes induces sinusoidal endothelial cell proliferation during regeneration after partial hepatectomy in rats. Journal of Hepatology 34(5): 683-689.

Bockhorn, M., Goralski, M., Prokofiev, D., Dammann, P., Grünewald, P., Trippler, M., Frilling, A. (2007). VEGF is important for early liver regeneration after partial hepatectomy. Journal of Surgical Research 138(2): 291-299.

Yamamoto, C., Yagi, S., Hori, T., Iida, T., Taniguchi, K., Isaji, S., & Uemoto, S. (2010). Significance of portal venous VEGF during liver regeneration after hepatectomy. Journal of Surgical Research 159(2): e37-e43.

Lau, T. T., & Wang, D.-A. (2011). Stromal cell-derived factor-1 (SDF-1): homing factor for engineered regenerative medicine. Expert opinion on biological therapy 11(2): 189-197.

Tsuchiya, A., Imai, M., Kamimura, H., Takamura, M., Yamagiwa, S., Sugiyama, T., Nakahata, T. (2012). Increased susceptibility to severe chronic liver damage in CXCR4 conditional knock-out mice. Digestive Diseases and Sciences 57(11): 2892-2900.

Lu, M. H., Li, C. Z., Hu, C. J., Fan, Y. H., Wang, S. M., Wu, Y. Y., Yang, S. M. (2012). microRNA-27b suppresses mouse MSC migration to the liver by targeting SDF-1alphain vitro. Biochem. Biophys. Res. Commun. 421(2): 389-395.

Du, Z., Wei, C., Yan, J., Han, B., Zhang, M., Peng, C., & Liu, Y. (2013). Mesenchymal Stem Cells Overexpressing C‐X‐C Chemokine Receptor Type 4 Improve Early Liver Regeneration of Small‐for‐Size Liver Grafts. Liver Transplantation 19(2): 215-225.

van Poll, D., Parekkadan, B., Cho, C. H., Berthiaume, F., Nahmias, Y., Tilles, A. W., & Yarmush, M. L. (2008). Mesenchymal stem cell–derived molecules directly modulate hepatocellular death and regeneration in vitro and in vivo. Hepatology 47(5): 1634-1643.

van den Broek, M. A., Shiri‐Sverdlov, R., Schreurs, J. J., Bloemen, J. G., Bieghs, V., Rensen, S. S., Olde Damink, S. W. (2013). Liver manipulation during liver surgery in humans is associated with hepatocellular damage and hepatic inflammation. Liver International 33(4): 633-641.

Suzuki, N., Irie, M., Iwata, K., Nakane, H., Yoshikane, M., Koyama, Y., Sohda, T. (2006). Altered expression of alkaline phosphatase (ALP) in the liver of primary biliary cirrhosis (PBC) patients. Hepatology Research 35(1): 37-44.

Whyte, M. P. (2010). Physiological role of alkaline phosphatase explored in hypophosphatasia. Annals of the New York Academy of Science 1192(1): 190-200.

Ali, G., Mohsin, S., Khan, M., Nasir, G. A., Shams, S., Khan, S. N., & Riazuddin, S. (2012). Nitric oxide augments mesenchymal stem cell ability to repair liver fibrosis. Journal of Translational Medicine 10(1): 1-9.

Sonpavde, G., Pond, G. R., Berry, W. R., de Wit, R., Armstrong, A. J., Eisenberger, M. A., & Tannock, I. F. (2012). Serum alkaline phosphatase changes predict survival independent of PSA changes in men with castration-resistant prostate cancer and bone metastasis receiving chemotherapy. Urologic Oncology: Seminars and Original Investigations 30(5): 607-613.

Yamanaka, N., Okamoto, E., Kawamura, E., Kato, T., Oriyama, T., Fujimoto, J., Tanaka, W. (2005). Dynamics of normal and injured human liver regeneration after hepatectomy as assessed on the basis of computed tomography and liver function. Hepatology 18(1): 79-85.

van de Steeg, E., Stránecký, V., Hartmannová, H., Nosková, L., Hřebíček, M., Wagenaar, E., Kenworthy, K. E. (2012). Complete OATP1B1 and OATP1B3 deficiency causes human Rotor syndrome by interrupting conjugated bilirubin reuptake into the liver. The Journal of Clinical Investigation 122(2): 519-528.

Downloads

Published

2020-12-31
CITATION
DOI: 10.52229/pbmj.v3i2.16
Published: 2020-12-31

How to Cite

Hussain, A., Ali, G., Afzal, M. A., Tayyeb, A. ., Akram, S. J., & Akram, J. . (2020). Phase-dependent expression profiling and quantification of several growth factors in liver regeneration after partial hepatectomy: Growth factors in liver regeneration. Pakistan BioMedical Journal, 3(2). https://doi.org/10.52229/pbmj.v3i2.16

Issue

Section

Original Article

Plaudit