The Association of Covid-19 Outbreak with Cancer Patients

Association of COVID-19 Outbreak with Cancer Patients

Authors

  • Wardha Ghaffar University Institute of Medical Lab Technology, Faculty of Allied Health Sciences, The University of Lahore, Lahore, Pakistan
  • Maha Noor University Institute of Medical Lab Technology, Faculty of Allied Health Sciences, The University of Lahore, Lahore, Pakistan
  • Parsikla Akram University Institute of Medical Lab Technology, Faculty of Allied Health Sciences, The University of Lahore, Lahore, Pakistan
  • shehla javaid University Institute of Medical Lab Technology, Faculty of Allied Health Sciences, The University of Lahore, Lahore, Pakistan

DOI:

https://doi.org/10.54393/pbmj.v5i5.438

Keywords:

SARS-COV-2, COVID-19, Cancer, RAAS, Spike proteins

Abstract

SARS-CoV-2 was perceived in China which forms a pandemic within weeks and affected the whole world population. Unfortunately, some people who were already suffering from cancer were affected severely and had more disease severity. COVID-19 badly affected cancer diagnosis and treatment resulting in increased mortality rate. A major issue that cancer patients had to face was a lack of access to necessary health care. The “Renin-angiotensin-aldosterone system (RAAS)” plays a role in cancer development, it was observed that COVID-19 affects the functioning of RAAS by affecting the Angiotensin-Converting Enzyme -2 (ACE-2) receptor with the assistance of spike proteins to gain entrance into the cells. It was proved that the ACE 2 receptor is a major link between cancer and COVID-19.  Cancer patients are very sensitive to COVID-19 due to “macrophages”. Macrophages induce inflammatory responses in both cancer and COVID-19 patients. It was also observed that COVID-19 may create a microenvironment for cancer development by increasing the activation of macrophages, and neutrophils as well as causing the overproduction of proinflammatory cytokines.

References

Wu Z, McGoogan JM. Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72 314 Cases From the Chinese Center for Disease Control and Prevention. JAMA. 2020 Apr 7;323(13):1239-1242. doi: 10.1001/jama.2020.2648.

Terpos E, Engelhardt M, Cook G, Gay F, Mateos MV, Ntanasis-Stathopoulos I et al. Management of patients with multiple myeloma in the era of COVID-19 pandemic: a consensus paper from the European Myeloma Network (EMN). Leukemia. 2020 Aug;34(8):2000-2011. doi: 10.1038/s41375-020-0876-z.

Mian H, Grant SJ, Engelhardt M, Pawlyn C, Bringhen S, Zweegman S et al. Caring for older adults with multiple myeloma during the COVID-19 Pandemic: Perspective from the International Forum for Optimizing Care of Older Adults with Myeloma. J Geriatr Oncol. 2020 Jun;11(5):764-768. doi: 10.1016/j.jgo.2020.04.008.

Dai M, Liu D, Liu M, Zhou F, Li G, Chen Z et al. Patients with Cancer Appear More Vulnerable to SARS-CoV-2: A Multicenter Study during the COVID-19 Outbreak. Cancer Discov. 2020 Jun;10(6):783-791. doi: 10.1158/2159-8290.CD-20-0422.

Liang W, Guan W, Chen R, Wang W, Li J, Xu K et al. Cancer patients in SARS-CoV-2 infection: a nationwide analysis in China. Lancet Oncol. 2020 Mar;21(3):335-337. doi: 10.1016/S1470-2045(20)30096-6.

Desai A, Sachdeva S, Parekh T, Desai R. COVID-19 and Cancer: Lessons From a Pooled Meta-Analysis. JCO Glob Oncol. 2020 Apr;6:557-559. doi: 10.1200/GO.20.00097.

Zhang L, Zhu F, Xie L, Wang C, Wang J, Chen R et al. Clinical characteristics of COVID-19-infected cancer patients: a retrospective cas.e study in three hospitals within Wuhan, China. Ann Oncol. 2020 Jul;31(7):894-901. doi: 10.1016/j.annonc.2020.03.296.

Mehta V, Goel S, Kabarriti R, Cole D, Goldfinger M, Acuna-Villaorduna A et al. Case Fatality Rate of Cancer Patients with COVID-19 in a New York Hospital System. Cancer Discov. 2020 Jul;10(7):935-941. doi: 10.1158/2159-8290.CD-20-0516.

Alagoz O, Lowry KP, Kurian AW, Mandelblatt JS, Ergun MA, Huang H et al. Impact of the COVID-19 Pandemic on Breast Cancer Mortality in the US: Estimates From Collaborative Simulation Modeling. J Natl Cancer Inst. 2021 Nov 2;113(11):1484-1494. doi: 10.1093/jnci/djab097.

Wang H, Zhang L. Risk of COVID-19 for patients with cancer. Lancet Oncol. 2020 Apr;21(4):e181. doi: 10.1016/S1470-2045(20)30149-2.

Khan IH, Zahra SA, Zaim S, Harky A. At the heart of COVID‐19. Journal of cardiac surgery. 2020 Jun;35(6):1287-94. doi.org/10.1111/jocs.14596.

Wu F, Zhao S, Yu B, Chen YM, Wang W, Song ZG et al. Author Correction: A new coronavirus associated with human respiratory disease in China. Nature. 2020 Apr;580(7803):E7. doi: 10.1038/s41586-020-2202-3.

Sungnak W, Huang N, Bécavin C, Berg M, Queen R, Litvinukova M et al. SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes. Nat Med. 2020 May;26(5):681-687. doi: 10.1038/s41591-020-0868-6.

Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell. 2020 Apr 16;181(2):271-280.e8. doi: 10.1016/j.cell.2020.02.052.

Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veesler D. Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell. 2020 Apr 16;181(2):281-292.e6. doi: 10.1016/j.cell.2020.02.058.

Watanabe Y, Allen JD, Wrapp D, McLellan JS, Crispin M. Site-specific glycan analysis of the SARS-CoV-2 spike. Science. 2020 Jul 17;369(6501):330-333. doi: 10.1126/science.abb9983.

Bosch BJ, van der Zee R, de Haan CA, Rottier PJ. The coronavirus spike protein is a class I virus fusion protein: structural and functional characterization of the fusion core complex. J Virol. 2003 Aug;77(16):8801-11. doi: 10.1128/jvi.77.16.8801-8811.2003.

Xia S, Zhu Y, Liu M, Lan Q, Xu W, Wu Y et al. Fusion mechanism of 2019-nCoV and fusion inhibitors targeting HR1 domain in spike protein. Cell Mol Immunol. 2020 Jul;17(7):765-767. doi: 10.1038/s41423-020-0374-2.

Tang T, Bidon M, Jaimes JA, Whittaker GR, Daniel S. Coronavirus membrane fusion mechanism offers a potential target for antiviral development. Antiviral Res. 2020 Jun;178:104792. doi: 10.1016/j.antiviral.2020.104792.

Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh CL, Abiona O et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science. 2020 Mar 13;367(6483):1260-1263. doi: 10.1126/science.abb2507.

Bertram S, Dijkman R, Habjan M, Heurich A, Gierer S, Glowacka I et al. TMPRSS2 activates the human coronavirus 229E for cathepsin-independent host cell entry and is expressed in viral target cells in the respiratory epithelium. J Virol. 2013 Jun;87(11):6150-60. doi: 10.1128/JVI.03372-12.

Du L, Kao RY, Zhou Y, He Y, Zhao G, Wong C et al. Cleavage of spike protein of SARS coronavirus by protease factor Xa is associated with viral infectivity. Biochem Biophys Res Commun. 2007 Jul 20;359(1):174-9. doi: 10.1016/j.bbrc.2007.05.092.

Weissenhorn W, Dessen A, Calder LJ, Harrison SC, Skehel JJ, Wiley DC. Structural basis for membrane fusion by enveloped viruses. Mol Membr Biol. 1999 Jan-Mar;16(1):3-9. doi: 10.1080/096876899294706.

Gui M, Song W, Zhou H, Xu J, Chen S, Xiang Y et al. Cryo-electron microscopy structures of the SARS-CoV spike glycoprotein reveal a prerequisite conformational state for receptor binding. Cell Res. 2017 Jan;27(1):119-129. doi: 10.1038/cr.2016.152.

Hulswit RJ, de Haan CA, Bosch BJ. Coronavirus Spike Protein and Tropism Changes. Adv Virus Res. 2016;96:29-57. doi: 10.1016/bs.aivir.2016.08.004.

Yan R, Zhang Y, Li Y, Xia L, Guo Y, Zhou Q. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science. 2020 Mar 27;367(6485):1444-1448. doi: 10.1126/science.abb2762.

Bao L, Deng W, Huang B, Gao H, Liu J, Ren L et al. The pathogenicity of SARS-CoV-2 in hACE2 transgenic mice. Nature. 2020 Jul;583(7818):830-833. doi: 10.1038/s41586-020-2312-y.

Barbry P, Muus C, Luecken M, Eraslan G, Waghray A, Heimberg G et al. Integrated analyses of single-cell atlases reveal age, gender, and smoking status associations with cell type-specific expression of mediators of SARS-CoV-2 viral entry and highlights inflammatory programs in putative target cells.

Sidaway P. COVID-19 and cancer: what we know so far. Nat Rev Clin Oncol. 2020 Jun;17(6):336. doi: 10.1038/s41571-020-0366-2.

Pinto BGG, Oliveira AER, Singh Y, Jimenez L, Gonçalves ANA, Ogava RLT et al. ACE2 Expression Is Increased in the Lungs of Patients With Comorbidities Associated With Severe COVID-19. J Infect Dis. 2020 Jul 23;222(4):556-563. doi: 10.1093/infdis/jiaa332.

Smith JC, Sausville EL, Girish V, Yuan ML, Vasudevan A, John KM et al. Cigarette Smoke Exposure and Inflammatory Signaling Increase the Expression of the SARS-CoV-2 Receptor ACE2 in the Respiratory Tract. Dev Cell. 2020 Jun 8;53(5):514-529.e3. doi: 10.1016/j.devcel.2020.05.012.

Stopsack KH, Mucci LA, Antonarakis ES, Nelson PS, Kantoff PW. TMPRSS2 and COVID-19: Serendipity or Opportunity for Intervention? Cancer Discov. 2020 Jun;10(6):779-782. doi: 10.1158/2159-8290.CD-20-0451.

Montopoli M, Zumerle S, Vettor R, Rugge M, Zorzi M, Catapano CV et al. Androgen-deprivation therapies for prostate cancer and risk of infection by SARS-CoV-2: a population-based study (N = 4532). Ann Oncol. 2020 Aug;31(8):1040-1045. doi: 10.1016/j.annonc.2020.04.479.

Newman LA, Winn RA, Carethers JM. Similarities in risk for COVID-19 and cancer disparities. Clinical Cancer Research. 2021 Jan 1;27(1):24-7. doi.org/10.1158/1078-0432.CCR-20-3421.

Sica A, Colombo MP, Trama A, Horn L, Garassino MC, Torri V. Immunometabolic Status of COVID-19 Cancer Patients. Physiol Rev. 2020 Oct 1;100(4):1839-1850. doi: 10.1152/physrev.00018.2020.

Bhardwaj K, Liu P, Leibowitz JL, Kao CC. The coronavirus endoribonuclease Nsp15 interacts with retinoblastoma tumor suppressor protein. J Virol. 2012 Apr;86(8):4294-304. doi: 10.1128/JVI.07012-11.

Geisslinger F, Vollmar AM, Bartel K. Cancer Patients Have a Higher Risk Regarding COVID-19 - and Vice Versa? Pharmaceuticals (Basel). 2020 Jul 6;13(7):143. doi: 10.3390/ph13070143.

Francescangeli F, De Angelis ML, Baiocchi M, Rossi R, Biffoni M, Zeuner A. COVID-19-Induced Modifications in the Tumor Microenvironment: Do They Affect Cancer Reawakening and Metastatic Relapse? Front Oncol. 2020 Oct 26;10:592891. doi: 10.3389/fonc.2020.592891.

Downloads

Published

2022-05-31

How to Cite

Ghaffar, W. ., Noor, M., Akram, P. ., & javaid, shehla. (2022). The Association of Covid-19 Outbreak with Cancer Patients: Association of COVID-19 Outbreak with Cancer Patients. Pakistan BioMedical Journal, 5(5), 38–43. https://doi.org/10.54393/pbmj.v5i5.438

Issue

Section

Review Article

Most read articles by the same author(s)