Determination of Physiological, Biochemical and Anti-oxidative Status in Type 1 Diabetes Mellitus Patients

Physiological, biochemical and anti-oxidative status in T1DM patients

Authors

  • Hafiz Muhammad Arsalan Faculty of General Medicine, Altamimi Bachelor Clinical University, Bishkek, Kyrgyzstan
  • Gulnaz Kousar Department of Biochemistry, Minhaj University Lahore, Pakistan
  • Amanbekov Akylbek Amanbekovich Department of Pathology, International School of Medicine, Bishkek, Kyrgyzstan
  • Munib Ashfaq Department of Biochemistry, Minhaj University Lahore, Pakistan

DOI:

https://doi.org/10.54393/pbmj.v6i04.898

Keywords:

Diabetes, SOD, MDA, CAT, GSH, NO, AOPP

Abstract

Type 1 Diabetes Mellitus (T1DM) disorganization of glucose equilibrium distinguishes by autoimmune disruption of the insulin producing pancreatic β-cell that constantly leads to insulin scarcity and resulting hyperglycemia Objective: To determine the physiological, biochemical, and anti-oxidant status in Type 1 Diabetes Mellitus Patients. Methods: It is a comparative study. 60 diabetic patients and 50 Samples of healthy individuals were taken from Nawaz Sharif Hospital. Blood samples (5.0 ml) were obtained and centrifuged at 4000 rpm for 10 minutes to separate the serum. Glutathione (GSH), Catalase (CAT), Superoxide Dismutase (SOD), Malondialdehyde (MDA), Nitric oxide (NO), micronutrients (Vitamin A, Vitamin C and Vitamin E) and Electrolytes was determined. Results: MDA level is progressively higher in T1DM (14.01±0.06) as compared to control group (1.27±0.21) (P- Value 0.000). GSH status is notably reduced in diabetic patients (0.15±.05) as compared to normal (6.24±0.33). Comparable anti-oxidant catalase is reduced (2.82±.04) in affected individuals as compared to normal individuals 4.19±1.09. SOD level was remarkably marked up to (13.52±3.21) in susceptible persons as compared to normal (2.15±0.23).  Vitamin A level was markedly reduced to (1.62±0.26) in patients as compared to healthy individuals (7.18±0.33). Conclusions: T1DM patients particularly showed reduced amounts and competency of antioxidant protections due to elevated consumption of specific anti-oxidant components such as low level of intracellular glutathione and Catalase and primarily low levels of vitamin A, vitamin E and vitamin C and exalted level of MDA, SOD and NO.

References

Sicree R, Shaw J, Zimmet P. Prevalence and projections. Diabetes Atlas. 2006; 3: 16-04.

Shillitoe RW. Psychology and diabetes: Psychosocial factors in management and control. Chapman and Hall; 1988.

Scott RV and Peters AL. Diabetes mellitus type 2–A review. Emergency Medicine. 2010 Apr; 2(1): 1-2. doi: 10.1016/j.ijdm.2009.12.009. DOI: https://doi.org/10.1016/j.ijdm.2009.12.009

Piero NM, Joan MN, Kibiti CM, Ngeranwa J, Njue WN, Maina DN, et al. Hypoglycemic activity of some Kenyan plants traditionally used to manage diabetes mellitus in eastern province. Journal of Diabetes & Metabolism. 2011; 2: 8. doi: 10.4172/2155-6156.1000155. DOI: https://doi.org/10.4172/2155-6156.1000155

Kibiti CM. Hypoglycaemic potential of some Kenyan plants used in traditional medicine in Rift valley, Nairobi and Eastern provinces, Msc thesis, Kenyatta University, 2006. Available at: https://ir-library.ku.ac.ke/handle/123456789/1932.

Belinda R. Gale Encyclopaedia of Alternative Medicine. Gale Encyclopaedia of Alternative Medicine; 2004.

Harris MI, Klein R, Welborn TA, Knuiman MW. Onset of NIDDM occurs at least 4–7 yr before clinical diagnosis. Diabetes Care. 1992 Jul; 15(7): 815-9. doi: 10.2337/diacare.15.7.815. DOI: https://doi.org/10.2337/diacare.15.7.815

American Diabetes Association. International Expert Committee report on the role of the A1C assay in the diagnosis of diabetes. Diabetes Care. 2009; 32(7): 1327-34. doi: 10.2337/dc09-9033. DOI: https://doi.org/10.2337/dc09-9033

Shimizu S, Takahashi N, Mori Y. TRPs as chemosensors (ROS, RNS, RCS, gasotransmitters). Mammalian Transient Receptor Potential (TRP) Cation Channels: Volume II. Springer Cham. 2014 Apr: 767-94. doi: 10.1007/978-3-319-05161-1_3 DOI: https://doi.org/10.1007/978-3-319-05161-1_3

Khanna S. Thiol antioxidants: protection against oxidative stress and redox regulation of cellular responses. Kuopio University Publications C. Natural and Environmental Sciences. 2000; 109: 75.

Lipinski B. Pathophysiology of oxidative stress in diabetes mellitus. Journal of Diabetes and its Complications. 2001 Jul; 15(4): 203-10. doi: 10.1016/S1056-8727(01)00143-X. DOI: https://doi.org/10.1016/S1056-8727(01)00143-X

Moussa SA. Oxidative stress in diabetes mellitus. Romanian Journal of Biophysics. 2008; 18(3): 225–236.

Erejuwa OO. Oxidative stress in diabetes mellitus: is there a role for hypoglycemic drugs and/or antioxidants. Oxidative Stress and Diseases. 2012 Apr; 217: 246.

Owens DR, Zinman B, Bolli GB. Insulins today and beyond. The Lancet. 2001 Sep; 358(9283): 739-46. doi: 10.1016/S0140-6736(01)05842-1. DOI: https://doi.org/10.1016/S0140-6736(01)05842-1

Kakkar P, Das B, Viswanathan PN. A modified spectrophotometer assay of superoxide dismutase. Indian Journal of Biochemistry and Biophysics. 1984 Apr; 21(1): 130-132.

Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry. 1979 Jun; 95(2): 351-8. doi: 10.1016/0003-2697(79)90738-3. DOI: https://doi.org/10.1016/0003-2697(79)90738-3

Aebi H. [13] Catalase in vitro. Methods in Enzymology. 1984 Jan; 105: 121-126. doi: 10.1016/S0076-6879(84)05016-3. DOI: https://doi.org/10.1016/S0076-6879(84)05016-3

Moron MS, Depierre JW, Mannervik B. Levels of glutathione, glutathione reductase and glutathione S-transferase activities in rat lung and liver. Biochimica et Biophysica Acta (BBA)-General Subjects. 1979 Jan; 582(1): 67-78. doi: 10.1016/0304-4165(79)90289-7. DOI: https://doi.org/10.1016/0304-4165(79)90289-7

Moshage H, Kok B, Huizenga JR, Jansen PL. Nitrite and nitrate determinations in plasma: a critical evaluation. Clinical Chemistry. 1995 Jun; 41(6): 892-6. doi: 10.1093/clinchem/41.6.892 DOI: https://doi.org/10.1093/clinchem/41.6.892

Joseph HR and Kuether CA. The determination of ascorbic acid in whole blood and urine through the 2-4 dinitrophenylhydrazine derivative of dehydroascorbic acid. Journal of Biological Chemistry. 1943; 147: 399. doi: 10.1016/S0021-9258(18)72395-8. DOI: https://doi.org/10.1016/S0021-9258(18)72395-8

Rosenberg SA, Packard BS, Aebersold PM, Solomon D, Topalian SL, Toy ST, et al. Use of tumor-infiltrating lymphocytes and interleukin-2 in the immunotherapy of patients with metastatic melanoma. New England Journal of Medicine. 1988 Dec; 319(25): 1676-80. doi: 10.1056/NEJM198812223192527. DOI: https://doi.org/10.1056/NEJM198812223192527

Malaisse WJ. Insulin release: the fuel concept. Diabète & Métabolisme. 1983 Dec; 9(4): 313-20.

Gopaul NK, Änggård EE, Mallet AI, Betteridge DJ, Wolff SP, Nourooz-Zadeh J. Plasma 8‐epi‐PGF2α levels are elevated in individuals with non‐insulin dependent diabetes mellitus. FEBS Letters. 1995 Jul; 368(2): 225-9. doi: 10.1016/0014-5793(95)00649-T. DOI: https://doi.org/10.1016/0014-5793(95)00649-T

Paolisso G, D'Amore A, Volpe C, Balbi V, Saccomanno F, Galzerano D, et al. Evidence for a relationship between oxidative stress and insulin action in non-insulin-dependent (type II) diabetic patients. Metabolism. 1994 Nov; 43(11): 1426-9. doi: 10.1016/0026-0495(94)90039-6. DOI: https://doi.org/10.1016/0026-0495(94)90039-6

Delmastro MM and Piganelli JD. Oxidative stress and redox modulation potential in type 1 diabetes. Clinical and Developmental Immunology. 2011 Oct; 2011. doi: 10.1155/2011/593863. DOI: https://doi.org/10.1155/2011/593863

Rodiño‐Janeiro BK, González‐Peteiro M, Ucieda‐Somoza R, González‐Juanatey JR, Álvarez E. Glycated albumin, a precursor of advanced glycation end‐products, up‐regulates NADPH oxidase and enhances oxidative stress in human endothelial cells: molecular correlate of diabetic vasculopathy. Diabetes/Metabolism Research and Reviews. 2010 Oct; 26(7): 550-8. doi: 10.1002/dmrr.1117. DOI: https://doi.org/10.1002/dmrr.1117

Ceriello A. Oxidative stress and diabetes-associated complications. Endocrine Practice. 2006 Jan; 12: 60-2. doi: 10.4158/EP.12.S1.60. DOI: https://doi.org/10.4158/EP.12.S1.60

Baynes JW. Role of oxidative stress in development of complications in diabetes. Diabetes. 1991 Apr; 40(4): 405-412. doi: 10.2337/diabetes.40.4.405. DOI: https://doi.org/10.2337/diabetes.40.4.405

Cox ME and Edelman D. Tests for screening and diagnosis of type 2 diabetes. Clinical Diabetes. 2009 Jan; 27(4): 132-8. doi: 10.2337/diaclin.27.4.132. DOI: https://doi.org/10.2337/diaclin.27.4.132

Dröge W. Free radicals in the physiological control of cell function. Physiological Reviews. 2002 Jan; 82(1): 47-95. doi: 10.1152/physrev.00018.2001. DOI: https://doi.org/10.1152/physrev.00018.2001

Downloads

Published

2023-04-30
CITATION
DOI: 10.54393/pbmj.v6i04.898
Published: 2023-04-30

How to Cite

Arsalan, H. M. ., Kousar, G. ., Akylbek Amanbekovich, A. . ., & Ashfaq, M. . (2023). Determination of Physiological, Biochemical and Anti-oxidative Status in Type 1 Diabetes Mellitus Patients : Physiological, biochemical and anti-oxidative status in T1DM patients. Pakistan BioMedical Journal, 6(04), 39–43. https://doi.org/10.54393/pbmj.v6i04.898

Issue

Section

Original Article

Plaudit