Comprehensive overview on Bacillus subtilis antibacterial metabolites production
Bacillus Subtilis Antibacterial Metabolites Production
DOI:
https://doi.org/10.52229/pbmj.v4i1.65Abstract
Over the last 70 years, Food processors and the plant protection sector have both benefited from Bacillus subtilis. Their capacity to manufacture endospores for survival, as well as a multitude of antimicrobial substances has piqued industrial interest in areas such as food preservation, medicinal agents, and biopesticides. In light of the growing trend of food healing and the protection of bacterial plants, this review suggests a holistic approach to visualizing the antimicrobial screen described in Group B. This review aims to make easy and updated classification of antimicrobial metabolites in group B. subtilis, its complex phylogeny that tends to perpetuate development.
References
Gordon, R.E., W.C. Haynes, and C.H.-N. Pang, The genus bacillus. Agr. Res. Ser., US Dept. Agri.1973. 427. https://www.scienceopen.com/document?vid=ff893235-f469-4d1d-87d8-4b4d9c309622
Nicholson, W.J.C. and M.L.S. CMLS, Roles of Bacillus endospores in the environment. 2002. 59(3): 410-416. doi: 10.1007/s00018-002-8433-7
Fan, B., et al., Bacillus amyloliquefaciens, Bacillus velezensis, and Bacillus siamensis form an “operational group B. amyloliquefaciens” within the B. subtilis species complex. Front Microbiol. 2017. 8: . 22.doi: 10.3389/fmicb.2017.00022
Keita, M.B., et al., Non-contiguous finished genome sequence and description of Bacillus massiliogorillae. Stand Genomic Sci. 2013. 9 (1): 93. doi: 10.4056/sigs.4388124
Cutting, S.M.J.F.m., Bacillus probiotics. Food Microbiol. 2011. 28 (2): 214-220. doi: 10.1016/j.fm.2010.03.007
Chalasani, A.G., et al.,An antimicrobial metabolite from Bacillus sp.: significant activity against pathogenic bacteria including multidrug-resistant clinical strains. Front Microbiol. 2015. 6: 1335. doi: 10.3389/fmicb.2015.01335
Amin, A., et al., Production of peptide antibiotics by Bacillus sp: GU 057 indigenously isolated from saline soil. Braz J. Microbiol. 2012. 43(4): 1340-1346. doi: 10.1590/S1517-838220120004000015
O’sullivan, L., R. Ross, and C.J.B. Hill, Potential of bacteriocin-producing lactic acid bacteria for improvements in food safety and quality. Biochimie. 2002. 84(5-6): 593-604. doi: 10.1016/s0300-9084(02)01457-8
Shafi, J., et al., Bacillus species as versatile weapons for plant pathogens: a review. Biotech. Biotech. Equp. 2017. 31(3): 446-459. doi:10.1080/13102818.2017.1286950
Sumi, C.D., et al., Antimicrobial peptides of the genus Bacillus: a new era for antibiotics. Can. J. Microbiol. 2015. 61(2): 93-103. doi: 10.1139/cjm-2014-0613
McIntosh, J.A., M.S. Donia, and E.W.J.N.p.r. Schmidt, Ribosomal peptide natural products: bridging the ribosomal and nonribosomal worlds. Nat. Prod. Rep. 2009. 26(4): 537-559. doi: 10.1039/b714132g
Abriouel, H., et al., Diversity and applications of Bacillus bacteriocins. FEMS Microb. Rev. 2011. 35(1): 201-232. doi: 10.1111/j.1574-6976.2010.00244.x
Willey, J.M. and W.A.J.A.R.M. van der Donk, Lantibiotics: peptides of diverse structure and function. Annu. Rev. Microb. 2007. 61: 477-501. doi: 10.1146/annurev.micro.61.080706.093501
Gautam, N. and N.J.I.j.o.m. Sharma, Bacteriocin: safest approach to preserve food products. Ind. J. Microb. 2009. 49(3): 204-211. doi: 10.1007/s12088-009-0048-3
Ariffin, H., et al., Production and characterization of cellulase by Bacillus pumilus EB3. Intl. J. Eng. Tech. 2006. 3(1): 47-53. https://www.researchgate.net/publication/287118368_Production_and_characterization_of_cellulase_by_Bacillus_pumilus_EB3
Geraldine, A.M., et al., Cell wall-degrading enzymes and parasitism of sclerotia are key factors on field biocontrol of white mold by Trichoderma spp. 2013. 67(3): 308-316. doi:10.1016/J.BIOCONTROL.2013.09.013
Smith, S. and S.-C.J.N.p.r. Tsai, The type I fatty acid and polyketide synthases: a tale of two megasynthases. Nat. Prod. Rep. 2007. 24(5): 1041-1072. doi: 10.1039/b603600g
Hertweck, C.J.A.C.I.E., The biosynthetic logic of polyketide diversity. Angew Chem Int Ed Engl. 2009. 48(26): 4688- 4716. doi: 10.1002/anie.200806121
Ongena, M. and P.J.T.i.m. Jacques, Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol. 2008. 16(3): 115-125. doi: 10.1016/j.tim.2007.12.009
Ongena, M., et al., Bacillus subtilis M4 decreases plant susceptibility towards fungal pathogens by increasing host resistance associated with differential gene expression. Appl. Microb. Biotech.. 2005. 67(5): 692-698. doi: 10.1007/s00253-004-1741-0
Kai, M., et al., Bacterial volatiles and their action potential. Appl. Microb. Biotech. 2009. 81(6): 1001-1012. doi: 10.1007/s00253-008-1760-3
Janiak, A. and S.J.M.m. Milewski, Mechanism of antifungal action of kanosamine. Med. Mycol. 2001. 39(5): 401-408. doi:10.1080/MMY.39.5.401.408
Béchet, M., et al., Structure, biosynthesis, and properties of kurstakins, nonribosomal lipopeptides from Bacillus spp.Appl. Microb. Biotech. 2012. 95(3): 593-600. doi: 10.1007/s00253-012-4181-2
Schmidt, R., et al., Volatile affairs in microbial interactions. The ISME. J. 2015. 9(11): 2329- 2335. doi:10.1038/ismej.2015.42.
McNeal, K.S. and B.E.J.S.S.S.o.A.J. Herbert, Volatile organic metabolites as indicators of soil microbial activity and community composition shifts.Soil Sci. Soc. Ame. J.
73(2): 579-588. doi:10.2136/SSSAJ2007.0245
Scholz, R., et al., Amylocyclicin, a novel circular bacteriocin produced by Bacillus amyloliquefaciens FZB42. J. Bacteriol. 2014. 196(10): 1842-1852. doi: 10.1128/JB.01474-14
Schulz, S. and J.S.J.N.p.r. Dickschat, Bacterial volatiles: the smell of small organisms. Nat. Prod. Rep. 2007. 24(4): p. 814-842. doi: 10.1039/b507392h
Liu, W.-W., et al., Antagonistic activities of volatiles from four strains of Bacillus spp. and Paenibacillus spp. against soil-borne plant pathogens. Agricultural Sci. China. 2008. 7(9): 1104-1114.https://doi.org/10.1016/S1671-2927(08)60153-4
Bentley, R., E.J.C.r.i.b. Haslam, and m. biology, The shikimate pathway—a metabolic tree with many branche. Chembiochem. 1990. 25(5): 307-384.doi: 10.1002/cbic.200500174
Dickschat, J.S., et al., Biosynthesis and identification of volatiles released by the myxobacterium Stigmatella aurantiaca. Chembiochem. 2005. 6(11): 2023-2033. doi: 10.1002/cbic.200500174
Tahir, H.A.S., et al., Bacillus volatiles adversely affect the physiology and ultra-structure of Ralstonia solanacearum and induce systemic resistance in tobacco against bacterial wilt. Sci. Rep. 2017. 7(1): 1-15. doi: 10.1038/srep40481
Mulligan, C.N., R.N. Yong, and B.F.J.J.o.h.m. Gibbs, Heavy metal removal from sediments by biosurfactants. J. Hazard Mater. 2001. 85(1-2): 111-125. doi: 10.1016/s0304- 3894(01)00224-2
Fisher, A.J., et al., Nonradioactive assay for cellular dimethylallyl diphosphate. Anal BioChem. 2001. 292(2): 272-9. doi: 10.1006/abio.2001.5079
Julsing, M.K., et al., Functional analysis of genes involved in the biosynthesis of isoprene in Bacillus subtilis.Appl Microbiol Biotechnol. 2007. 75(6): 1377-1384. doi: 10.1007/s00253- 007-0953-5
Gong, A.-D., et al., Antagonistic mechanism of iturin A and plipastatin A from Bacillus amyloliquefaciens S76-3 from wheat spikes against Fusarium graminearum. PLoS One. 2015. 10(2): e0116871. doi: 10.1371/journal.pone.0116871
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Pakistan BioMedical Journal
This work is licensed under a Creative Commons Attribution 4.0 International License.
This is an open-access journal and all the published articles / items are distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. For comments editor@pakistanbmj.com