Analysis of Genetic Variants of ANGPTL4 Gene Responsible for Atherosclerosis Severity in Cardiac Patients

Variants of ANGPTL4 Gene Responsible for Atherosclerosis Severity

Authors

  • Kainaat Zafar Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
  • Amina Shahid Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
  • Saba Anam Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
  • Zawar Hussain Department of Zoology, University of Education, Lahore, Pakistan
  • Muhammad Saqib Shahzad Department of Biology, Government Graduate College, Lahore, Pakistan
  • Muhammad Khalil Ahmad Khan Department of Zoology, University of Okara, Okara, Pakistan
  • Akram Tariq Department of Biology, Higher Education Department, Lahore, Pakistan

DOI:

https://doi.org/10.54393/pbmj.v8i2.1207

Keywords:

ANGPTL4, LPL, Triglycerides, rs116843064, VLDL, HDL, Atherosclerosis, E40K

Abstract

ANGPTL4 gene is a major factor in the onset of atherosclerosis and exacerbation of its severity. ANGPTL4 regulates lipoprotein lipase (LPL), but its inhibitory effect causes decreased triglyceride clearance. The E40K mutation reduces ANGPTL4 oligomer formation, reducing LPL activity suppression. Objectives: To correlate ANGPTL4 N-terminal chain variations with atherosclerotic cardiovascular disease severity in Pakistani individuals, enabling diagnosis, treatment, and prevention. Methods: A case control study was conducted at Surgimed Hospital, Lahore on 100 Pakistani cardiovascular patients and 50 healthy control subjects. The N-terminal chain of the ANGPTL4 gene was sequenced revealing 14 individuals (9.33%) were heterozygous carriers of the ANGPTL4 gene variant (rs116843064; G>A, E40K) in our population (n=150). Results: Among the participants, four (2.67%) individuals had severe atherosclerosis with heterozygous genotype (GA), eight (5.33%) had mild atherosclerosis with heterozygous genotype (GA), and two were healthy controls (1.33%) with heterozygous genotype (GA). This study showed the significant association of E40K variant of N-terminal chain of ANGPTL4 with less likely chance of severe atherosclerosis in our cardiovascular patients. The E40K alters the regulation of lipoprotein lipase, affecting lipid levels and impacting cardiovascular health. Conclusions: E40K mutation carriers exhibit a lower risk of severe atherosclerosis in cardiovascular patients due to better lipid profiles as HDL levels were lower in non-carriers and higher in carriers.

References

Li Y, Wu W, Liu W, Zhou M. Roles and Mechanisms of Renalase in Cardiovascular Disease: A Promising Therapeutic Target. Biomedicine & Pharmacotherapy. 2020; 131: 110712. doi:10.1016/j.biopha.2020.110712. DOI: https://doi.org/10.1016/j.biopha.2020.110712

Amini M, Zayeri F, Salehi M. Trend Analysis of Cardiovascular Disease Mortality, Incidence, and Mortality-to-Incidence Ratio: Results from Global Burden of Disease Study 2017. BMC Public Health. 2021; 21(1): 1-12. doi:10.1186/s12889-021-10429-0. DOI: https://doi.org/10.1186/s12889-021-10429-0

Hossain MS, Dulal DD, Faysal DF. Prevalence of Cardiovascular Disease and Associated Risk Factors Among Adults. Dinkum Journal of Medical Innovations. 2024; 3(05): 379-90.

Tohirova J, Shernazarov F. Atherosclerosis: Causes, Symptoms, Diagnosis, Treatment and Prevention. Science and Innovation. 2022; 1(D5): 7-12.

Jan B, Dar MI, Choudhary B, Basist P, Khan R, Alhalmi A. Cardiovascular Diseases Among Indian Older Adults: A Comprehensive Review. Cardiovascular Therapeutics. 2024; 2024(1): 6894693. doi:10.1155/2024/6894693. DOI: https://doi.org/10.1155/2024/6894693

Ciumărnean L, Milaciu MV, Negrean V, Orășan OH, Vesa SC, Sălăgean O, et al. Cardiovascular Risk Factors and Physical Activity for the Prevention of Cardiovascular Diseases in the Elderly. International Journal of Environmental Research and Public Health. 2022; 19(1): 207. doi:10.3390/ijerph19010207. DOI: https://doi.org/10.3390/ijerph19010207

Blackburn NB, Meikle PJ, Peralta JM, Kumar S, Leandro AC, Bellinger MA, et al. Identifying the Lipidomic Effects of A Rare Loss-of-Function Deletion In ANGPTL3. Circulation: Genomic and Precision Medicine. 2021 Jun; 14(3): e003232. doi: 10.1161/CIRCGEN.120.003232. DOI: https://doi.org/10.1161/CIRCGEN.120.003232

Schinzari F, Vizioli G, Campia U, Tesauro M, Cardillo C. Variable Changes Of Circulating ANGPTL3 And ANGPTL4 In Different Obese Phenotypes: Relationship With Vasodilator Dysfunction. Biomedicines. 2021 Aug; 9(8): 1037. doi: 10.3390/biomedicines9081037. DOI: https://doi.org/10.3390/biomedicines9081037

Yang J, Li X, Xu D. Research Progress on The Involvement of ANGPTL4 and Loss-of-Function Variants in Lipid Metabolism and Coronary Heart Disease: Is The “Prime Time” Of ANGPTL4-Targeted Therapy for Coronary Heart Disease Approaching? Cardiovascular Drugs and Therapy. 2021 Jun; 35: 467-77. doi: 10.1007/s10557-020-07001-0. DOI: https://doi.org/10.1007/s10557-020-07001-0

Gugliucci A. Angiopoietin-Like Proteins and Lipoprotein Lipase: The Waltz Partners That Govern Triglyceride-Rich Lipoprotein Metabolism? Impact on Atherogenesis, Dietary Interventions, and Emerging Therapies. Journal of Clinical Medicine. 2024; 13(17): 5229. doi:10.3390/jcm13175229. DOI: https://doi.org/10.3390/jcm13175229

Arya AK, Tripathi K, Das P. Promising Role of ANGPTL4 Gene in Diabetic Wound Healing. The International Journal of Lower Extremity Wounds. 2014; 13(1): 58-63. doi:10.1177/1534734614520704. DOI: https://doi.org/10.1177/1534734614520704

Sylvers-Davie KL, Davies BS. Regulation of Lipoprotein Metabolism by ANGPTL3, ANGPTL4, and ANGPTL8. American Journal of Physiology-Endocrinology and Metabolism. 2021; 321(4): E493-E508. doi:10.1152/ajpendo.00195.2021. DOI: https://doi.org/10.1152/ajpendo.00195.2021

Aryal B, Price NL, Suarez Y, Fernández-Hernando C. ANGPTL4 in Metabolic and Cardiovascular Disease. Trends in Molecular Medicine. 2019; 25(8): 723-34. doi:10.1016/j.molmed.2019.05.010. DOI: https://doi.org/10.1016/j.molmed.2019.05.010

Gagnon E, Bourgault J, Gobeil É, Thériault S, Arsenault BJ. Impact of Loss-of-Function in Angiopoietin-Like 4 on the Human Phenome. Atherosclerosis. 2024; 393: 117558. doi:10.1016/j.atherosclerosis.2024.118497. DOI: https://doi.org/10.1016/j.atherosclerosis.2024.117558

Saponaro C, Gaggini M, Carli F, Gastaldelli A. The Subtle Balance Between Lipolysis and Lipogenesis: A Critical Point in Metabolic Homeostasis. Nutrients. 2015; 7(11): 9453-75. doi:10.3390/nu7115475. DOI: https://doi.org/10.3390/nu7115475

Young SG, Fong LG, Beigneux AP, Allan CM, He C, Jiang H, et al. GPIHBP1 and Lipoprotein Lipase, Partners in Plasma Triglyceride Metabolism. Cell Metabolism. 2019; 30(1): 51-65. doi:10.1016/j.cmet.2019.05.023. DOI: https://doi.org/10.1016/j.cmet.2019.05.023

Kersten S. Role and Mechanism of the Action of Angiopoietin-Like Protein ANGPTL4 in Plasma Lipid Metabolism. Journal of Lipid Research. 2021; 62. doi:10.1016/j.jlr.2021.100150. DOI: https://doi.org/10.1016/j.jlr.2021.100150

Gugliucci A. Triglyceride-Rich Lipoprotein Metabolism: Key Regulators of Their Flux. Journal of Clinical Medicine. 2023; 12(13): 4399. doi:10.3390/jcm12134399. DOI: https://doi.org/10.3390/jcm12134399

Shen C, Fan D, Fu H, Zheng C, Chen Y, Hu Z. Single Nucleotide Polymorphisms in the ANGPTL4 Gene and the SNP-SNP Interactions on the Risk of Atherosclerotic Ischaemic Stroke. BMC Neurology. 2021; 21(1): 1-6. doi:10.1186/s12883-021-02138-3. DOI: https://doi.org/10.1186/s12883-021-02138-3

Wang B, Shen Y, Zhai L, Xia X, Gu HM, Wang M, et al. Atherosclerosis-Associated Hepatic Secretion of VLDL but Not PCSK9 Is Dependent on Cargo Receptor Protein Surf4. Journal of Lipid Research. 2021; 62. doi:10.1016/j.jlr.2021.100091. DOI: https://doi.org/10.1016/j.jlr.2021.100091

Wen Y, Chen YQ, Konrad RJ. The Regulation of Triacylglycerol Metabolism and Lipoprotein Lipase Activity. Advanced Biology. 2022 Oct; 6(10): 2200093. doi: 10.1002/adbi.202200093. DOI: https://doi.org/10.1002/adbi.202200093

Abid K, Trimeche T, Mili D, Msolli MA, Trabelsi I, Nouira S, Kenani A. ANGPTL4 Variants E40K and T266M Are Associated with Lower Fasting Triglyceride Levels and Predict Cardiovascular Disease Risk in Type 2 Diabetic Tunisian Population. Lipids in Health and Disease. 2016; 15: 1-7. doi:10.1186/s12944-016-0231- DOI: https://doi.org/10.1186/s12944-016-0231-6

Downloads

Published

2025-02-28
CITATION
DOI: 10.54393/pbmj.v8i2.1207
Published: 2025-02-28

How to Cite

Zafar, K., Shahid, A., Anam, S., Hussain, Z., Shahzad, M. S., Khan, M. K. A., & Tariq, A. (2025). Analysis of Genetic Variants of ANGPTL4 Gene Responsible for Atherosclerosis Severity in Cardiac Patients: Variants of ANGPTL4 Gene Responsible for Atherosclerosis Severity. Pakistan BioMedical Journal, 8(2), 37–45. https://doi.org/10.54393/pbmj.v8i2.1207

Issue

Section

Original Article

Plaudit