Immunological memory as the fundamentals of vaccines

Immunological memory and vaccines


  • Fatima Haider Capital University of Science and Technology, Islamabad, Pakistan
  • Amir Sultan Comsats University, Islamabad, Pakistan
  • Hassan Ahmed Khan Abbottabad University of Science and Technology, Abbottabad, Pakistan



The immune system also called as the defense system involves many different cells that work as soldiers in an individual. These immune cells provide protection against various pathogens. For better protection of an individual the immune systems has the ability to memorize or remember the pathogen. This ability is known as immunological memory. With the help of immunological memory the immune memory cells remember the antigen and are prepared if there is an encounter with the antigen in future. The immunological memory can be developed against certain strains with the help of different types of vaccines. Such types of vaccines that are currently being used to save lives are, Live attenuated vaccines, Toxoid vaccines, Subunit vaccines, Glyco-conjugated vaccines, and Killed/Inactivated vaccines. These vaccine show different efficiency. Hence, the immunological memory generated after a single vaccination may wear off with time. Multiple numbers of shots are required for the development of long term memory. All these types of vaccines vary from each other in their manufacturing and also in their mechanism of providing long term immunological memory. They show many pros and cons but their advantages are greater than their disadvantages. Thus, are preferred to be used for the betterment of mankind.   


Aguilar, J. a. R., E. (2007). Vaccine adjuvants revisited. . Vaccine, 25(19), 3752-3762.

Avci, F. a. K., D. (2010). How Bacterial Carbohydrates Influence the Adaptive Immune System. Annual Review of Immunology, 28(1), 107-130.

Baraldo, K., Mori, E., Bartoloni, A., Norelli, F., Grandi, G., Rappuoli, R., Finco, O. and Del Giudice, G. (2005). Combined Conjugate Vaccines: Enhanced Immunogenicity with the N19 Polyepitope as a Carrier Protein. Infection and Immunity, 73(9), 5835-5841.

Baxter, D. (2007). Active and passive immunity, vaccine types, excipients and licensing. Occupational Medicine, 57(8), 552-556.

Belshe, R., Edwards, K., Vesikari, T., Black, S., Walker, R., Hultquist, M., Kemble, G. and Connor, E. (2007). Live Attenuated versus Inactivated Influenza Vaccine in Infants and Young Children. New England Journal of Medicine, 356(7), 685-696.

Bhardwaj, S. (2018). Vaccines. Pharmaceutical Medicine and Translational Clinical Research, 341-353.

Castellino, F., Galli, G., Del Giudice, G. and Rappuoli, R. (2009). Generating memory with vaccination. European Journal of Immunology, 39(8), 2100-2105.

Delves, P. a. R., I. (2000). The Immune System. New England Journal of Medicine, 343(1), 37-49.

Fouchier, R., Munster, V., Wallensten, A., Bestebroer, T., Herfst, S., Smith, D., Rimmelzwaan, G., Olsen, B. and Osterhaus, A. (2005). Characterization of a Novel Influenza A Virus Hemagglutinin Subtype (H16) Obtained from Black-Headed Gulls. Journal of Virology, 79(5), 2814-2822.

Galli, G., Hancock, K., Hoschler, K., DeVos, J., Praus, M., Bardelli, M., Malzone, C., Castellino, F., Gentile, C., McNally, T., Del Giudice, G., Banzhoff, A., Brauer, V., Montomoli, E., Zambon, M., Katz, J., Nicholson, K. and Stephenson, I. (2009). Fast rise of broadly cross-reactive antibodies after boosting long-lived human memory B cells primed by an MF59 adjuvanted prepandemic vaccine. Proceedings of the National Academy of Sciences, 106(19), 7962-7967.

Galli, G., Medini, D., Borgogni, E., Zedda, L., Bardelli, M., Malzone, C., Nuti, S., Tavarini, S., Sammicheli, C., Hilbert, A., Brauer, V., Banzhoff, A., Rappuoli, R., Del Giudice, G. and Castellino, F. (2009). Adjuvanted H5N1 vaccine induces early CD4+ T cell response that predicts long-term persistence of protective antibody levels. Proceedings of the National Academy of Sciences, 106(10), 3877-3882.

Hashimoto, K., Ono, N., Tatsuo, H., Minagawa, H., Takeda, M., Takeuchi, K. and Yanagi, Y. (2002). SLAM (CD150)-Independent Measles Virus Entry as Revealed by Recombinant Virus Expressing Green Fluorescent Protein. Journal of Virology, 76(13), 6743-6749.

Hause, B., Collin, E., Liu, R., Huang, B., Sheng, Z., Lu, W., Wang, D., Nelson, E. and Li, F. (2014). Characterization of a Novel Influenza Virus in Cattle and Swine: Proposal for a New Genus in the Orthomyxoviridae Family. mBio, 5(2).

K. Abbas, A., H. Lichtman, A. and S. Pober, J. (2000). Cellular and molecular immunology (4th ed.). Philadelphia: W.B. Saunders.

Kamboj, K., Kirchner, H., Kimmel, R., Greenspan, N. and Schreiber, J. . (2003). Significant Variation in Serotype‐Specific Immunogenicity of the Seven‐ValentStreptococcus pneumoniaeCapsular Polysaccharide–CRM197Conjugate Vaccine Occurs Despite Vigorous T Cell Help Induced by the Carrier Protein. The Journal of Infectious Diseases, 187(10), 1629-1638.

Leonard, E., Canaday, D., Harding, C. and Schreiber, J. (2003). Antigen Processing of the Heptavalent Pneumococcal Conjugate Vaccine Carrier Protein CRM197 Differs Depending on the Serotype of the Attached Polysaccharide. Infection and Immunity, 71(7), 4186-4189.

Leroux-Roels, I. a. L.-R., G. . (2009). Current status and progress of prepandemic and pandemic influenza vaccine development. Expert Review of Vaccines, 8(4), 401-423.

Medzhitov, R. a. J., C. (2000). Innate Immunity. New England Journal of Medicine, 343(5), 338-344.

Mitchison, N. (2004). T-cell–B-cell cooperation. . Nature Reviews Immunology, 4(4), 308-312.

Morefield, G. L., Sokolovska, A., Jiang, D., HogenEsch, H., Robinson, J. P., & Hem, S. L. . (2005). Role of aluminum-containing adjuvants in antigen internalization by dendritic cells in vitro. Vaccine, 23(13), 1588-1595.

Mosca, F., Tritto, E., Muzzi, A., Monaci, E., Bagnoli, F., Iavarone, C., O'Hagan, D., Rappuoli, R. and De Gregorio, E. (2008). Molecular and cellular signatures of human vaccine adjuvants. Proceedings of the National Academy of Sciences, 105(30), 10501-10506.

Orme, I., McMurray, D. and Belisle, J. (2001). Tuberculosis vaccine development: recent progress. Trends in Microbiology, 9(3), 115-118.

Pellizzari, R., Rossetto, O., Schiavo, G. and Montecucco, C. (1999). Tetanus and botulinum neurotoxins: mechanism of action and therapeutic uses. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 354(1381), 259-268.

Querec, T., Akondy, R., Lee, E., Cao, W., Nakaya, H., Teuwen, D., Pirani, A., Gernert, K., Deng, J., Marzolf, B., Kennedy, K., Wu, H., Bennouna, S., Oluoch, H., Miller, J., Vencio, R., Mulligan, M., Aderem, A., Ahmed, R. and Pulendran, B. (2008). Systems biology approach predicts immunogenicity of the yellow fever vaccine in humans. Nature Immunology, 10(1), 116-225.

Rappuoli, R. (2018). Glycoconjugate vaccines: Principles and mechanisms. Science Translational Medicine, 10(456), 4615.

Salisbury, D., Ramsay, M. and Karen Noakes, K. (2006). Immunisation against infectious disease (3rd ed.). London: TSO (The Stationery Office).

Sautto, G., Kirchenbaum, G. and Ross, T. (2018). Towards a universal influenza vaccine: different approaches for one goal. Virology Journal, 15(1).

Trotter, C., McVernon, J., Ramsay, M., Whitney, C., Mulholland, E., Goldblatt, D., Hombach, J. and Kieny, M. (2008). Optimising the use of conjugate vaccines to prevent disease caused by Haemophilus influenzae type b, Neisseria meningitidis and Streptococcus pneumoniae. Vaccine, 26(35), 4434-4445.

Weintraub, A. (2003). Immunology of bacterial polysaccharide antigens. Carbohydrate Research, 338(23), 2539-2547.



DOI: 10.52229/pbmj.v2i2.23
Published: 2019-12-31

How to Cite

Haider, F. ., Sultan, A., & Khan, H. A. . (2019). Immunological memory as the fundamentals of vaccines: Immunological memory and vaccines. Pakistan BioMedical Journal, 2(2).



Review Article