Thermostable Vaccines: Past, Present and Future Perspectives

Thermostable Vaccines

Authors

  • Misbah Farooqui Capital University of Science and Technology, Islamabad, Pakistan
  • Amir Sultan Comsats University, Islamabad, Pakistan
  • Hassan Ahmed Khan Abbottabad University of Science and Technology, Abbottabad, Pakistan

DOI:

https://doi.org/10.52229/pbmj.v2i1.26

Abstract

Vaccines stability has a major role in the success of immunization programs and saves millions of lives every year. To stabilize vaccines cold chains are developed for storage and transport, as efficiency of vaccines is hampered if they are not kept under proper temperature. Aluminum is used for making vaccine thermostable. The development of vaccine formulation is a critical part of overall development cycle of approving, testing and producing new vaccines. However, Liquid vaccine formulation is still preferred over dry formulation because of ease in using, packaging and manufacturing. Other approaches have been used to make vaccine thermostable. This study demonstrates those processes, used to develop thermo-sensitive vaccines into thermostable vaccine and also describes vaccine formulation designing and use of heat shock protein including mHSP70 and mHSP65 to generate innate and adaptive immune response.

References

Matthias, D. M., Robertson, J., Garrison, M. M., Newland, S., & Nelson, C. (2007). Freezing temperatures in the vaccine cold chain: a systematic literature review. Vaccine, 25(20), 3980-3986.

Brandau, D. T., Jones, L. S., Wiethoff, C. M., Rexroad, J., &Middaugh, C. R. (2003). Thermal stability of vaccines. Journal of pharmaceutical sciences, 92(2), 218-231.

Clénet, D. (2018). Accurate prediction of vaccine stability under real storage conditions and during temperature excursions. European Journal of Pharmaceutics and Biopharmaceutics, 125, 76-84.

Organizaion, W. H. (2009). Guidelines on stability evaluation of vaccines. Biologicals, 37(6), 424-434.

Schofield, T. L. (2009). Vaccine stability study design and analysis to support product licensure. Biologicals, 37(6), 387-396.

Food and Drug Administration, HHS. (2009). International Conference on Harmonisation; guidance on Q10 Pharmaceutical Quality System; availability. Notice. Federal register, 74(66), 15990

Stroup, W., & Quinlan, M. (2010). Alternative shelf life estimation methodologies. In JSM Proceedings

Quinlan, M., Stroup, W., Schwenke, J., & Christopher, D. (2013). Evaluating the performance of the ICH guidelines for shelf life estimation. Journal of biopharmaceutical statistics, 23(4), 881-896.

Burke, C. J., Hsu, T. A., & Volkin, D. B. (1999). Formulation, stability, and delivery of live attenuated vaccines for human use. Critical Reviews™ in Therapeutic Drug Carrier Systems, 16(1).

Pisal, S., Wawde, G., Salvankar, S., Lade, S., & Kadam, S. (2006). Vacuum foam drying for preservation of LaSota virus: effect of additives. Aaps Pharmscitech, 7(3), E30-E37.

Wong, Y. L., Sampson, S., Germishuizen, W. A., Goonesekera, S., Caponetti, G., Sadoff, J., ... & Edwards, D. (2007). Drying a tuberculosis vaccine without freezing. Proceedings of the National Academy of Sciences, 104(8), 2591-2595.

Maa, Y. F., Ameri, M., Shu, C., Payne, L. G., & Chen, D. (2004). Influenza vaccine powder formulation development: spray‐freeze‐drying and stability evaluation. Journal of pharmaceutical sciences, 93(7), 1912-1923.

Pedrique, B., Strub-Wourgaft, N., Some, C., Olliaro, P., Trouiller, P., Ford, N., ... & Bradol, J. H. (2013). The drug and vaccine landscape for neglected diseases (2000–11): a systematic assessment. The Lancet Global Health, 1(6), e371-e379.

World Health Organization. Temperature sensitivity of vaccines. 2006.

Kristensen, D. (2012). Summary of stability data for licensed vaccines. PATH: Seattle.

Sun, T., Han, H., Hudalla, G. A., Wen, Y., Pompano, R. R., & Collier, J. H. (2016). Thermal stability of self-assembled peptide vaccine materials. Acta biomaterialia, 30, 62-71.

Campeotto, I., Goldenzweig, A., Davey, J., Barfod, L., Marshall, J. M., Silk, S. E., ... & Fleishman, S. J. (2017). One-step design of a stable variant of the malaria invasion protein RH5 for use as a vaccine immunogen. Proceedings of the National Academy of Sciences, 114(5), 998-1002.

Pelliccia, M., Andreozzi, P., Paulose, J., D’Alicarnasso, M., Cagno, V., Donalisio, M., ... & Carney, R. P. (2016). Additives for vaccine storage to improve thermal stability of adenoviruses from hours to months. Nature communications, 7(1), 1-7.

Mistilis, M. J., Joyce, J. C., Esser, E. S., Skountzou, I., Compans, R. W., Bommarius, A. S., & Prausnitz, M. R. (2017). Long-term stability of influenza vaccine in a dissolving microneedle patch. Drug delivery and translational research, 7(2), 195-205.

Ohtake, S., Martin, R., Saxena, A., Pham, B., Chiueh, G., Osorio, M., ... & Truong-Le, V. (2011). Room temperature stabilization of oral, live attenuated Salmonella enterica serovar Typhi-vectored vaccines. Vaccine, 29(15), 2761-2771.

Chen, D., Kapre, S., Goel, A., Suresh, K., Beri, S., Hickling, J., ... & Kristensen, D. (2010). Thermostable formulations of a hepatitis B vaccine and a meningitis A polysaccharide conjugate vaccine produced by a spray drying method. Vaccine, 28(31), 5093-5099.

Lovalenti, P. M., Anderl, J., Yee, L., Nguyen, V., Ghavami, B., Ohtake, S., ... & Truong-Le, V. (2016). Stabilization of live attenuated influenza vaccines by freeze drying, spray drying, and foam drying. Pharmaceutical research, 33(5), 1144-1160.

Alcock, R., Cottingham, M. G., Rollier, C. S., Furze, J., De Costa, S. D., Hanlon, M., ... & Bregu, M. (2010). Long-term thermostabilization of live poxviral and adenoviral vaccine vectors at supraphysiological temperatures in carbohydrate glass. Science translational medicine, 2(19), 19ra12-19ra12.

Marrack, P., McKee, A. S., & Munks, M. W. (2009). Towards an understanding of the adjuvant action of aluminium. Nature Reviews Immunology, 9(4), 287-293.

Exley, C., Siesjö, P., & Eriksson, H. (2010). The immunobiology of aluminium adjuvants: how do they really work?. Trends in immunology, 31(3), 103-109.

Chang, M. F., Shi, Y., Nail, S. L., HogenEsch, H., Adams, S. B., White, J. L., & Hem, S. L. (2001). Degree of antigen adsorption in the vaccine or interstitial fluid and its effect on the antibody response in rabbits. Vaccine, 19(20-22), 2884-2889.

Jezek, J., Chen, D., Watson, L., Crawford, J., Perkins, S., Tyagi, A., & Jones Braun, L. (2009). A heat-stable hepatitis B vaccine formulation. Human vaccines, 5(8), 529-535.

Singh, M., & Srivastava, I. K. (Eds.). (2011). Development of Vaccines: From Discovery to Clinical Testing. John Wiley & Sons.

Chen, D., & Kristensen, D. (2009). Opportunities and challenges of developing thermostable vaccines. Expert review of vaccines, 8(5), 547-557.

Chan, M. Y., Dutill, T. S., & Kramer, R. M. (2017). Lyophilization of adjuvanted vaccines: methods for formulation of a thermostable freeze-dried product. In Vaccine Adjuvants (pp. 215-226). Humana Press, New York, NY.

Kamerzell, T. J., Esfandiary, R., Joshi, S. B., Middaugh, C. R., & Volkin, D. B. (2011). Protein–excipient interactions: Mechanisms and biophysical characterization applied to protein formulation development. Advanced drug delivery reviews, 63(13), 1118-1159.

Amorij, J. P., Meulenaar, J., Hinrichs, W. L. J., Stegmann, T., Huckriede, A., Coenen, F., & Frijlink, H. W. (2007). Rational design of an influenza subunit vaccine powder with sugar glass technology: preventing conformational changes of haemagglutinin during freezing and freeze-drying. Vaccine, 25(35), 6447-6457.

Ebrahimi, S. M., & Tebianian, M. (2011). Role of mycobacterial heat shock protein 70 (mHSP70) as genetic vaccine adjuvants. World Appl Sci J, 14(10), 1569-1575.

Hartl, F. U., & Hayer-Hartl, M. (2002). Molecular chaperones in the cytosol: from nascent chain to folded protein. Science, 295(5561), 1852-1858.

Cusi, M. G., Terrosi, C., Savellini, G. G., Di Genova, G., Zurbriggen, R., & Correale, P. (2004). Efficient delivery of DNA to dendritic cells mediated by influenza virosomes. Vaccine, 22(5-6), 735-739.

Qazi, K. R., Oehlmann, W., Singh, M., López, M. C., & Fernández, C. (2007). Microbial heat shock protein 70 stimulatory properties have different TLR requirements. Vaccine, 25(6), 1096-1103.

Downloads

Published

2019-06-30
CITATION
DOI: 10.52229/pbmj.v2i1.26
Published: 2019-06-30

How to Cite

Farooqui, M., Sultan, A. ., & Khan, H. A. . (2019). Thermostable Vaccines: Past, Present and Future Perspectives: Thermostable Vaccines. Pakistan BioMedical Journal, 2(1). https://doi.org/10.52229/pbmj.v2i1.26

Issue

Section

Review Article

Plaudit