Bioengineering of the Optimized Biosynthesis of Commercially Vital Carotenoids- Techno-Advanced Applications

Biosynthesis of Commercially Vital Carotenoids

Authors

  • Ishrat Perveen Food and Biotechnology Research Centre, Pakistan Council of Scientific and Industrial Research Centre, Lahore, Pakistan
  • Naaz Abbas Food and Biotechnology Research Centre, Pakistan Council of Scientific and Industrial Research Centre, Lahore, Pakistan
  • Bakhtawar Bukhari Food and Biotechnology Research Centre, Pakistan Council of Scientific and Industrial Research Centre, Lahore, Pakistan
  • Yasar Saleem Food and Biotechnology Research Centre, Pakistan Council of Scientific and Industrial Research Centre, Lahore, Pakistan
  • Sania Mazhar Food and Biotechnology Research Centre, Pakistan Council of Scientific and Industrial Research Centre, Lahore, Pakistan
  • Shaista Nawaz Food and Biotechnology Research Centre, Pakistan Council of Scientific and Industrial Research Centre, Lahore, Pakistan
  • Quratulain Syed Food and Biotechnology Research Centre, Pakistan Council of Scientific and Industrial Research Centre, Lahore, Pakistan
  • Syed Hussain Imam Abidi Pakistan Council of Scientific and Industrial Research Centre, Islamabad, Pakistan
  • Sana Riaz Food and Biotechnology Research Centre, Pakistan Council of Scientific and Industrial Research Centre, Lahore, Pakistan
  • Fatima Akram Food and Biotechnology Research Centre, Pakistan Council of Scientific and Industrial Research Centre, Lahore, Pakistan

DOI:

https://doi.org/10.54393/pbmj.v6i12.995

Keywords:

Carotenoids, Vitamin-A, Bio-engineering, Carotene, Lycopene

Abstract

Beta-carotene, a carotenoid found in plants, fungi, and algae, is a crucial antioxidant and anti-cancer agent. It is primarily derived from plants, algae, and microbes, but this method has drawbacks like high costs and low productivity. The growing demand for carotenoids has led to large-scale industrial manufacturing. However, extracting and synthesizing these chemicals can be costly and technical. Microbial synthesis offers a cost-effective alternative. Synthetic biology and metabolic engineering technologies have been used in various studies for the optimization of pathways for the overproduction of carotenoids. Four metabolic components are involved in carotenoid biosynthesis, central carbon (C), isoprene supplement, and cofactor metabolism. Metabolic engineering is a potential solution to enhance β-carotene production. This article explores the biochemical routes, methods used by natural microbial species, and metabolic engineering potential of microbial organisms for β-carotenoids production. Currently, Escherichia coli, certain euglena and yeast species are the primary microorganisms used in metabolic engineering, offering minimal environmental impact, cost-effective manufacturing, and high yield. 

 

References

Sinha S, Das S, Saha B, Paul D, Basu B. Anti-microbial, anti-oxidant, and anti-breast cancer properties unraveled in yeast carotenoids produced via cost-effective fermentation technique utilizing waste hydrolysate. Frontiers in Microbiology. 2023 Jan; 13: 1088477. doi: 10.3389/fmicb.2022.1088477. DOI: https://doi.org/10.3389/fmicb.2022.1088477

Chen QH, Wu BK, Pan D, Sang LX, Chang B. Beta-carotene and its protective effect on gastric cancer. World Journal of Clinical Cases. 2021 Aug; 9(23): 6591. doi: 10.12998/wjcc.v9.i23.6591. DOI: https://doi.org/10.12998/wjcc.v9.i23.6591

Ramesh C, Prasastha VR, Venkatachalam M, Dufossé L. Natural substrates and culture conditions to produce pigments from potential microbes in submerged fermentation. Fermentation. 2022 Sep; 8(9): 460. doi: 10.3390/fermentation8090460. DOI: https://doi.org/10.3390/fermentation8090460

Ren Y, Sun H, Deng J, Huang J, Chen F. Carotenoid production from microalgae: biosynthesis, salinity responses and novel biotechnologies. Marine Drugs. 2021 Dec; 19(12): 713. doi: 10.3390/md19120713. DOI: https://doi.org/10.3390/md19120713

Vadrale AP, Dong CD, Haldar D, Wu CH, Chen CW, Singhania RR, Patel AK. Bioprocess development to enhance biomass and lutein production from Chlorella sorokiniana Kh12. Bioresource Technology. 2023 Feb; 370: 128583. doi: 10.1016/j.biortech.2023.128583. DOI: https://doi.org/10.1016/j.biortech.2023.128583

Paul D, Kumari PK, Siddiqui N. Yeast carotenoids: Cost-effective fermentation strategies for health care applications. Fermentation. 2023 Feb; 9(2): 147. doi: 10.3390/fermentation9020147. DOI: https://doi.org/10.3390/fermentation9020147

Papapostolou H, Kachrimanidou V, Alexandri M, Plessas S, Papadaki A, Kopsahelis N. Natural Carotenoids: Recent Advances on Separation from Microbial Biomass and Methods of Analysis. Antioxidants. 2023 Apr; 12(5): 1030. doi: 10.3390/antiox12051030. DOI: https://doi.org/10.3390/antiox12051030

Islam F, Khan J, Zehravi M, Das R, Haque MA, et al. Synergistic Effects of Carotenoids: Therapeutic Benefits on Human Health. Process Biochemistry. 2024 Jan; 136: 254-72. 10.1016/j.procbio.2023.11.033. DOI: https://doi.org/10.1016/j.procbio.2023.11.033

Jomova K, Raptova R, Alomar SY, Alwasel SH, Nepovimova E, Kuca K, et al. Reactive oxygen species, toxicity, oxidative stress, and antioxidants: Chronic Diseases and Aging. Archives of Toxicology. 2023 Oct; 97(10): 2499-574. doi: 10.1007/s00204-023-03562-9. DOI: https://doi.org/10.1007/s00204-023-03562-9

Gaur V and Bera S. Microbial canthaxanthin: an orange-red keto carotenoid with potential pharmaceutical applications. BioTechnologia. 2023 Sep; 104(3): 315. doi: 10.5114/bta.2023.130733. DOI: https://doi.org/10.5114/bta.2023.130733

Pap R, Pandur E, Jánosa G, Sipos K, Agócs A, Deli J. Lutein exerts antioxidant and anti-inflammatory effects and influences iron utilization of BV-2 microglia. Antioxidants. 2021 Feb; 10(3): 363. doi: 10.3390/antiox10030363. DOI: https://doi.org/10.3390/antiox10030363

Ahn YJ and Kim H. Lutein as a modulator of oxidative stress-mediated inflammatory diseases. Antioxidants. 2021 Sep; 10(9): 1448. doi: 10.3390/antiox10091448. DOI: https://doi.org/10.3390/antiox10091448

Waiz M, Alvi SS, Khan MS. Potential dual inhibitors of PCSK-9 and HMG-R from natural sources in cardiovascular risk management. EXCLI Journal. 2022 Jan; 21: 47. doi: 0.17179/excli2021-4453.

Di Meo S, Reed TT, Venditti P, Victor VM. Role of ROS and RNS sources in physiological and pathological conditions. Oxidative Medicine and Cellular longevity. 2016 Oct; 2016. doi: 10.1155/2016/1245049. DOI: https://doi.org/10.1155/2016/1245049

Kushwah N, Bora K, Maurya M, Pavlovich MC, Chen J. Oxidative stress and antioxidants in age-related macular degeneration. Antioxidants. 2023 Jul; 12(7): 1379. doi: 10.3390/antiox12071379. DOI: https://doi.org/10.3390/antiox12071379

Chini Zittelli G, Lauceri R, Faraloni C, Silva Benavides AM, Torzillo G. Valuable pigments from microalgae: phycobiliproteins, primary carotenoids, and fucoxanthin. Photochemical and Photobiological Sciences. 2023 Apr 10: 1-57. doi: 10.1007/s43630-023-00407-3. DOI: https://doi.org/10.1007/s43630-023-00407-3

Starska-Kowarska K. Dietary carotenoids in head and neck cancer—molecular and clinical implications. Nutrients. 2022 Jan; 14(3): 531. doi: 10.3390/nu14030531. DOI: https://doi.org/10.3390/nu14030531

Morilla MJ, Ghosal K, Romero EL. More than pigments: The potential of astaxanthin and bacterioruberin-based nanomedicines. Pharmaceutics. 2023 Jun; 15(7): 1828. doi: 10.3390/pharmaceutics15071828. DOI: https://doi.org/10.3390/pharmaceutics15071828

Oslan SN, Oslan SN, Mohamad R, Tan JS, Yusoff AH, Matanjun P et al. Bioprocess strategy of Haematococcus lacustris for biomass and astaxanthin production keys to commercialization: perspective and future direction. Fermentation. 2022 Apr; 8(4): 179. doi: 10.3390/fermentation8040179. DOI: https://doi.org/10.3390/fermentation8040179

Yaqoob S, Riaz M, Shabbir A, Zia-Ul-Haq M, Alwakeel SS, Bin-Jumah M. Commercialization and marketing potential of carotenoids. Carotenoids: Structure and Function in the Human Body. 2021: 799-826. doi: 10.1007/978-3-030-46459-2_27. DOI: https://doi.org/10.1007/978-3-030-46459-2_27

Anila N, Simon DP, Chandrashekar A, Ravishankar GA, Sarada R. Metabolic engineering of Dunaliella salina for production of ketocarotenoids. Photosynthesis Research. 2016 Mar; 127: 321-33. doi: 10.1007/s11120-015-0188-8. DOI: https://doi.org/10.1007/s11120-015-0188-8

Kato Y and Hasunuma T. Metabolic engineering for carotenoid production using eukaryotic microalgae and prokaryotic cyanobacteria. Carotenoids: Biosynthetic and Biofunctional Approaches. Springer, Singapore. 2021: 121-35. doi: 10.1007/978-981-15-7360-6_10. DOI: https://doi.org/10.1007/978-981-15-7360-6_10

Wu Z, Liang X, Li M, Ma M, Zheng Q, Li D et al. Advances in the optimization of central carbon metabolism in metabolic engineering. Microbial Cell Factories. 2023 Dec; 22(1): 1-1. doi: 10.1186/s12934-023-02090-6. DOI: https://doi.org/10.1186/s12934-023-02090-6

Papagianni M. Recent advances in engineering the central carbon metabolism of industrially important bacteria. Microbial cell factories. 2012 Dec; 11(1): 1-3. doi: 10.1186/1475-2859-11-50. DOI: https://doi.org/10.1186/1475-2859-11-50

Wang N, Peng H, Yang C, Guo W, Wang M, Li G et al. Metabolic Engineering of Model Microorganisms for the Production of Xanthophyll. Microorganisms. 2023 May; 11(5): 1252. doi: 10.3390/microorganisms11051252. DOI: https://doi.org/10.3390/microorganisms11051252

Sasaki Y and Yoshikuni Y. Metabolic engineering for valorization of macroalgae biomass. Metabolic Engineering. 2022 May; 71: 42-61. doi: 10.1016/j.ymben.2022.01.005. DOI: https://doi.org/10.1016/j.ymben.2022.01.005

Wu Y, Yan P, Li Y, Liu X, Wang Z, Chen T et al. Enhancing β-carotene production in Escherichia coli by perturbing central carbon metabolism and improving the NADPH supply. Frontiers in Bioengineering and Biotechnology. 2020 Jun; 8: 585. doi: 10.3389/fbioe.2020.00585. DOI: https://doi.org/10.3389/fbioe.2020.00585

Yoon SH, Park HM, Kim JE, Lee SH, Choi MS, Kim JY et al. Increased β‐carotene production in recombinant escherichia coli harboring an engineered isoprenoid precursor pathway with mevalonate addition. Biotechnology Progress. 2007; 23(3): 599-605. doi: 10.1021/bp070012p. DOI: https://doi.org/10.1021/bp070012p

An N, Chen X, Sheng H, Wang J, Sun X, Yan Y et al. Rewiring the microbial metabolic network for efficient utilization of mixed carbon sources. Journal of Industrial Microbiology and Biotechnology. 2021 Dec; 48(9-10): kuab040. doi: 10.1093/jimb/kuab040. DOI: https://doi.org/10.1093/jimb/kuab040

Ma Y, Liu N, Greisen P, Li J, Qiao K, Huang S et al. Removal of lycopene substrate inhibition enables high carotenoid productivity in Yarrowia lipolytica. Nature Communications. 2022 Jan; 13(1): 572. doi: 10.1038/s41467-022-28277-w. DOI: https://doi.org/10.1038/s41467-022-28277-w

Zhang C, Chen X, Lindley ND, Too HP. A “plug‐n‐play” modular metabolic system for the production of apocarotenoids. Biotechnology and Bioengineering. 2018 Jan; 115(1): 174-83. doi: 10.1002/bit.26462. DOI: https://doi.org/10.1002/bit.26462

Li XR, Tian GQ, Shen HJ, Liu JZ. Metabolic engineering of Escherichia coli to produce zeaxanthin. Journal of Industrial Microbiology and Biotechnology. 2015 Apr; 42(4): 627-36. doi: 10.1007/s10295-014-1565-6. DOI: https://doi.org/10.1007/s10295-014-1565-6

Takemura M, Kubo A, Higuchi Y, Maoka T, Sahara T, Yaoi K et al. Pathway engineering for efficient biosynthesis of violaxanthin in Escherichia coli. Applied microbiology and biotechnology. 2019 Dec; 103: 9393-9. doi: 10.1007/s00253-019-10182-w. DOI: https://doi.org/10.1007/s00253-019-10182-w

López J, Bustos D, Camilo C, Arenas N, Saa PA, Agosin E. Engineering Saccharomyces cerevisiae for the overproduction of β-ionone and its precursor β-carotene. Frontiers in Bioengineering and Biotechnology. 2020 Sep; 8: 578793. doi: 10.3389/fbioe.2020.578793. DOI: https://doi.org/10.3389/fbioe.2020.578793

Cataldo VF, López J, Cárcamo M, Agosin E. Chemical vs. biotechnological synthesis of C 13-apocarotenoids: Current methods, applications and perspectives. Applied microbiology and biotechnology. 2016 Jul; 100: 5703-18. doi: 10.1007/s00253-016-7583-8. DOI: https://doi.org/10.1007/s00253-016-7583-8

Kim SH, Park YH, Schmidt-Dannert C, Lee PC. Redesign, reconstruction, and directed extension of the Brevibacterium linens C40 carotenoid pathway in Escherichia coli. Applied and environmental microbiology. 2010 Aug 1;76(15):5199-206. doi: 10.1128/AEM.00263-10. DOI: https://doi.org/10.1128/AEM.00263-10

Sun T, Miao L, Li Q, Dai G, Lu F, Liu T et al. Production of lycopene by metabolically-engineered Escherichia coli. Biotechnology letters. 2014 Jul; 36: 1515-22. doi: 10.1007/s10529-014-1543-0. DOI: https://doi.org/10.1007/s10529-014-1543-0

Yoon SH, Lee SH, Das A, Ryu HK, Jang HJ, Kim JY et al. Combinatorial expression of bacterial whole mevalonate pathway for the production of β-carotene in E. coli. Journal of Biotechnology. 2009 Mar; 140(3-4): 218-26. doi: 10.1016/j.jbiotec.2009.01.008. DOI: https://doi.org/10.1016/j.jbiotec.2009.01.008

Wang Z, Sun J, Yang Q, Yang J. Metabolic engineering Escherichia coli for the production of lycopene. Molecules. 2020 Jul; 25(14): 3136. doi: 10.3390/molecules25143136. DOI: https://doi.org/10.3390/molecules25143136

Cui M, Wang Z, Hu X, Wang X. Effects of lipopolysaccharide structure on lycopene production in Escherichia coli. Enzyme and Microbial Technology. 2019 May; 124: 9-16. doi: 10.1016/j.enzmictec.2019.01.009. DOI: https://doi.org/10.1016/j.enzmictec.2019.01.009

Nasrabadi MR and Razavi SH. Use of response surface methodology in a fed-batch process for optimization of tricarboxylic acid cycle intermediates to achieve high levels of canthaxanthin from Dietzia natronolimnaea HS-1. Journal of Bioscience and Bioengineering. 2010 Apr; 109(4): 361-8. doi: 10.1016/j.jbiosc.2009.10.013. DOI: https://doi.org/10.1016/j.jbiosc.2009.10.013

Thawornwiriyanun P, Tanasupawat S, Dechsakulwatana C, Techkarnjanaruk S, Suntornsuk W. Identification of newly zeaxanthin-producing bacteria isolated from sponges in the Gulf of Thailand and their zeaxanthin production. Applied Biochemistry and Biotechnology. 2012 Aug; 167: 2357-68. doi: 10.1007/s12010-012-9760-2. DOI: https://doi.org/10.1007/s12010-012-9760-2

Su B, Song D, Zhu H. Metabolic engineering of Saccharomyces cerevisiae for enhanced carotenoid production from xylose-glucose mixtures. Frontiers in Bioengineering and Biotechnology. 2020 May; 8: 435. doi: 10.3389/fbioe.2020.00435. DOI: https://doi.org/10.3389/fbioe.2020.00435

Naz T, Ullah S, Nazir Y, Li S, Iqbal B, Liu Q et al. Industrially Important Fungal Carotenoids: Advancements in Biotechnological Production and Extraction. Journal of Fungi. 2023 May; 9(5) :578. doi: 10.3390/jof9050578. DOI: https://doi.org/10.3390/jof9050578

Sevgili A and Erkmen O. Improved lycopene production from different substrates by mated fermentation of Blakeslea trispora. Foods. 2019 Apr; 8(4): 120. doi: 10.3390/foods8040120. DOI: https://doi.org/10.3390/foods8040120

Sandmann G. Carotenoids and their biosynthesis in fungi. Molecules. 2022 Feb; 27(4): 1431. doi: 10.3390/molecules27041431. DOI: https://doi.org/10.3390/molecules27041431

Shekh A, Sharma A, Schenk PM, Kumar G, Mudliar S. Microalgae cultivation: photobioreactors, CO2 utilization, and value‐added products of industrial importance. Journal of Chemical Technology and Biotechnology. 2022 May; 97(5): 1064-85. doi: 10.1002/jctb.6902. DOI: https://doi.org/10.1002/jctb.6902

Bu X, Lin JY, Duan CQ, Koffas MA, Yan GL. Dual regulation of lipid droplet-triacylglycerol metabolism and ERG9 expression for improved β-carotene production in Saccharomyces cerevisiae. Microbial Cell Factories. 2022 Dec; 21(1): 1-3. doi: 10.1186/s12934-021-01723-y. DOI: https://doi.org/10.1186/s12934-021-01723-y

Nemer G, Louka N, Vorobiev E, Salameh D, Nicaud JM, Maroun RG et al. Mechanical cell disruption technologies for the extraction of dyes and pigments from microorganisms: A Review. Fermentation. 2021 Mar; 7(1): 36. doi: 10.3390/fermentation7010036. DOI: https://doi.org/10.3390/fermentation7010036

Sakr EA, Khater DZ, Kheiralla ZM, Elkhatib KM. Statistical optimization of waste molasses-based exopolysaccharides and self-sustainable bioelectricity production for dual chamber microbial fuel cell by Bacillus piscis. Microbial Cell Factories. 2023 Oct; 22(1): 202. doi: 10.1186/s12934-023-02216-w. DOI: https://doi.org/10.1186/s12934-023-02216-w

Larroude M, Celinska E, Back A, Thomas S, Nicaud JM, Ledesma‐Amaro R. A synthetic biology approach to transform Yarrowia lipolytica into a competitive biotechnological producer of β‐carotene. Biotechnology and bioengineering. 2018 Feb; 115(2): 464-72. doi: 10.1002/bit.26473. DOI: https://doi.org/10.1002/bit.26473

Sun L, Kwak S, Jin YS. Vitamin A production by engineered Saccharomyces cerevisiae from xylose via two-phase in situ extraction. ACS synthetic biology. 2019 Aug; 8(9): 2131-40. doi: 10.1021/acssynbio.9b00217. DOI: https://doi.org/10.1021/acssynbio.9b00217

Saenge C, Cheirsilp B, Suksaroge TT, Bourtoom T. Potential use of oleaginous red yeast Rhodotorula glutinis for the bioconversion of crude glycerol from biodiesel plant to lipids and carotenoids. Process Biochemistry. 2011 Jan; 46(1): 210-8. doi: 10.1016/j.procbio.2010.08.009. DOI: https://doi.org/10.1016/j.procbio.2010.08.009

Araya-Garay JM, Feijoo-Siota L, Rosa-dos-Santos F, Veiga-Crespo P, Villa TG. Construction of new Pichia pastoris X-33 strains for production of lycopene and β-carotene. Applied Microbiology and Biotechnology. 2012 Mar; 93: 2483-92. doi: 10.1007/s00253-011-3764-7. DOI: https://doi.org/10.1007/s00253-011-3764-7

Zhao Y, Zhang Y, Nielsen J, Liu Z. Production of β‐carotene in Saccharomyces cerevisiae through altering yeast lipid metabolism. Biotechnology and Bioengineering. 2021 May; 118(5): 2043-52. doi: 10.1002/bit.27717. DOI: https://doi.org/10.1002/bit.27717

Parveen A, Bhatnagar P, Gautam P, Bisht B, Nanda M, Kumar S, et al., Enhancing the bio-prospective of microalgae by different light systems and photoperiods. Photochemical & Photobiological Sciences. 2023 Nov; 22(11): 2687-98. doi: 10.1007/s43630-023-00471-9. DOI: https://doi.org/10.1007/s43630-023-00471-9

Varghese R, Buragohain T, Banerjee I, Mukherjee R, Penshanwari SN, Agasti S, et al., The apocarotenoid production in microbial biofactories: An overview. Journal of Biotechnology. 2023 Jul; 374: 5–16. doi: 10.1016/j.jbiotec.2023.07.009. DOI: https://doi.org/10.1016/j.jbiotec.2023.07.009

Swapnil P, Meena M, Singh SK, Dhuldhaj UP, Marwal A. Vital roles of carotenoids in plants and humans to deteriorate stress with its structure, biosynthesis, metabolic engineering and functional aspects. Current Plant Biology. 2021 Jun; 26: 100203. doi: 10.1016/j.cpb.2021.100203. DOI: https://doi.org/10.1016/j.cpb.2021.100203

Debnath T, Bandyopadhyay TK, Vanitha K, Bobby MN, Tiwari ON, Bhunia B, et al., Astaxanthin from microalgae: A review on structure, biosynthesis, production strategies and application. Food Research International. 2023 Dec:113841. doi: 10.1016/j.foodres.2023.113841. DOI: https://doi.org/10.1016/j.foodres.2023.113841

Kang C, Zhai H, Xue L, Zhao N, He S, Liu Q. A lycopene β-cyclase gene, IbLCYB2, enhances carotenoid contents and abiotic stress tolerance in transgenic sweetpotato. Plant Science. 2018 Jul; 272: 243-54. doi: 10.1016/j.plantsci.2018.05.005. DOI: https://doi.org/10.1016/j.plantsci.2018.05.005

Lipko A, Pączkowski C, Perez-Fons L, Fraser PD, Kania M, Hoffman-Sommer M, et al., Divergent contribution of the MVA and MEP pathways to the formation of polyprenols and dolichols in Arabidopsis. Biochemical Journal. 2023 Apr; 480(8): 495-520. Doi: 10.1042/BCJ20220578. DOI: https://doi.org/10.1042/BCJ20220578

Sun T, Rao S, Zhou X, Li L. Plant carotenoids: Recent advances and future perspectives. Molecular Horticulture. 2022 Jan; 2(1): 3. doi: 10.1186/s43897-022-00023-2. DOI: https://doi.org/10.1186/s43897-022-00023-2

Li C, Swofford CA, Sinskey AJ. Modular engineering for microbial production of carotenoids. Metabolic Engineering Communications. 2020 Jun; 10: e00118. doi: 10.1016/j.mec.2019.e00118. DOI: https://doi.org/10.1016/j.mec.2019.e00118

Martínez-Cámara S, Ibañez A, Rubio S, Barreiro C, Barredo JL. Main carotenoids produced by microorganisms. Encyclopedia. 2021 Nov; 1(4): 1223-45. doi: 10.3390/encyclopedia1040093. DOI: https://doi.org/10.3390/encyclopedia1040093

Su B, Deng MR, Zhu H. Advances in the Discovery and Engineering of Gene Targets for Carotenoid Biosynthesis in Recombinant Strains. Biomolecules. 2023 Dec; 13(12): 1747. doi: 10.3390/biom13121747. DOI: https://doi.org/10.3390/biom13121747

Ho YH, Wong YK, Rao AR. Astaxanthin production from Haematococcus pluvialis by using illuminated photobioreactor. Global Perspectives on Astaxanthin. 2021 Jan: 209-24. doi: 10.1016/B978-0-12-823304-7.00030-1. DOI: https://doi.org/10.1016/B978-0-12-823304-7.00030-1

Sathasivam R and Ki JS. A review of the biological activities of microalgal carotenoids and their potential use in healthcare and cosmetic industries. Marine Drugs. 2018 Jan; 16(1): 26. doi: 10.3390/md16010026. DOI: https://doi.org/10.3390/md16010026

Zhu L, Gao H, Li L, Zhang Y, Zhao Y, Yu X. Promoting lutein production from the novel alga Acutodesmus sp. by melatonin induction. Bioresource Technology. 2022 Oct; 362: 127818. doi: 10.1016/j.biortech.2022.127818. DOI: https://doi.org/10.1016/j.biortech.2022.127818

Shendge AA and D’Souza JS. Strategic optimization of conditions for the solubilization of GST-tagged amphipathic helix-containing ciliary proteins overexpressed as inclusion bodies in E. coli. Microbial Cell Factories. 2022 Dec; 21(1): 258. doi: 10.1186/s12934-022-01979-y. DOI: https://doi.org/10.1186/s12934-022-01979-y

Choi SS and Kim GD. Production of carotenoids by bacteria; carotenoid productivity and availability. Journal of Life Science. 2022; 32(5): 411-9.

Jing Y, Wang J, Gao H, Jiang Y, Jiang W, Jiang M, et al., Enhanced β-carotene production in Yarrowia lipolytica through the metabolic and fermentation engineering. Journal of Industrial Microbiology and Biotechnology. 2023; 50(1): 9. doi: 10.1093/jimb/kuad009. DOI: https://doi.org/10.1093/jimb/kuad009

Velmurugan A and Muthukaliannan GK. Genetic manipulation for carotenoid production in microalgae an overview. Current Research in Biotechnology. 2022 Jan; 4: 221-8. doi: 10.1016/j.crbiot.2022.03.005. DOI: https://doi.org/10.1016/j.crbiot.2022.03.005

Rinaldi MA, Ferraz CA, Scrutton NS. Alternative metabolic pathways and strategies to high-titre terpenoid production in Escherichia coli. Natural Product Reports. 2022; 39(1): 90-118. doi: 10.1039/D1NP00025J. DOI: https://doi.org/10.1039/D1NP00025J

Zheng T, Guan L, Yu K, Haider MS, Nasim M, Liu Z et al., Expressional diversity of grapevine 3-Hydroxy-3-methylglutaryl-CoA reductase (VvHMGR) in different grapes genotypes. BMC Plant Biology. 2021 Dec; 21(1): 1-3. doi:10.1186/s12870-021-03073-8. DOI: https://doi.org/10.1186/s12870-021-03073-8

Yanagibashi S, Bamba T, Kirisako T, Kondo A, Hasunuma T. Beneficial effect of optimizing the expression balance of the mevalonate pathway introduced into the mitochondria on terpenoid production in Saccharomyces cerevisiae. Journal of Bioscience and Bioengineering. 2023 Dec; 137 (1): 16-23. doi: 10.1016/j.jbiosc.2023.11.004. DOI: https://doi.org/10.1016/j.jbiosc.2023.11.004

Kang W, Ma T, Liu M, Qu J, Liu Z, Zhang H et al., Modular enzyme assembly for enhanced cascade biocatalysis and metabolic flux. Nature communications. 2019 Sep; 10(1): 4248. doi: 10.1038/s41467-019-12247-w. DOI: https://doi.org/10.1038/s41467-019-12247-w

Di X, Ortega-Alarcon D, Kakumanu R, Iglesias-Fernandez J, Diaz L, Baidoo EE et al., MEP pathway products allosterically promote monomerization of deoxy-D-xylulose-5-phosphate synthase to feedback-regulate their supply. Plant Communications. 2023 May; 4(3). doi: 10.1016/j.xplc.2022.100512. DOI: https://doi.org/10.1016/j.xplc.2022.100512

Krause T, Wiesinger P, González-Cabanelas D, Lackus N, Köllner TG, Klüpfel T et al., HDR, the last enzyme in the MEP pathway, differently regulates isoprenoid biosynthesis in two woody plants. Plant Physiology. 2023 Jun; 192(2): 767-88. doi: 10.1093/plphys/kiad110. DOI: https://doi.org/10.1093/plphys/kiad110

Wang X, Baidoo EE, Kakumanu R, Xie S, Mukhopadhyay A, Lee TS. Engineering isoprenoids production in metabolically versatile microbial host Pseudomonas putida. Biotechnology for Biofuels and Bioproducts. 2022 Dec; 15(1): 137. doi: 10.1186/s13068-022-02235-6. DOI: https://doi.org/10.1186/s13068-022-02235-6

Zhao ML, Cai WS, Zheng SQ, Zhao JL, Zhang JL, Huang Y et al., Metabolic engineering of the isopentenol utilization pathway enhanced the production of terpenoids in Chlamydomonas reinhardtii. Marine Drugs. 2022 Sep; 20(9): 577. doi: 10.3390/md20090577. DOI: https://doi.org/10.3390/md20090577

Chen H, Li M, Liu C, Zhang H, Xian M, Liu H. Enhancement of the catalytic activity of Isopentenyl diphosphate isomerase (IDI) from Saccharomyces cerevisiae through random and site-directed mutagenesis. Microbial Cell Factories. 2018 Dec; 17: 1-4. doi: 10.1186/s12934-018-0913-z. DOI: https://doi.org/10.1186/s12934-018-0913-z

Kim YE, Cho KH, Bang I, Kim CH, Ryu YS, Kim Y et al., Characterization of an Entner–Doudoroff pathway-activated Escherichia coli. Biotechnology for Biofuels and Bioproducts. 2022 Nov; 15(1): 120. doi: 10.1186/s13068-022-02219-6. DOI: https://doi.org/10.1186/s13068-022-02219-6

Ding X, Zheng Z, Zhao G, Wang L, Wang H, Yang Q et al., Bottom-up synthetic biology approach for improving the efficiency of menaquinone-7 synthesis in Bacillus subtilis. Microbial Cell Factories. 2022 May; 21(1): 101. doi: 10.1186/s12934-022-01823-3. DOI: https://doi.org/10.1186/s12934-022-01823-3

He M, Guo R, Chen G, Xiong C, Yang X, Wei Y et al., Comprehensive Response of Rhodosporidium kratochvilovae to Glucose Starvation: A Transcriptomics-Based Analysis. Microorganisms. 2023 Aug; 11(9): 2168. doi: 10.3390/microorganisms11092168. DOI: https://doi.org/10.3390/microorganisms11092168

Allamand A, Piechowiak T, Lièvremont D, Rohmer M, Grosdemange-Billiard C. The Multifaceted MEP Pathway: Towards New Therapeutic Perspectives. Molecules. 2023 Feb; 28(3): 1403. doi: 10.3390/molecules28031403. DOI: https://doi.org/10.3390/molecules28031403

Liu H, Wang Y, Tang Q, Kong W, Chung WJ, Lu T. MEP pathway-mediated isopentenol production in metabolically engineered Escherichia coli. Microbial cell factories. 2014 Dec; 13(1): 1-8. doi: 10.1186/s12934-014-0135-y. DOI: https://doi.org/10.1186/s12934-014-0135-y

Rabbers I and Bruggeman FJ. Escherichia coli robustly expresses ATP synthase at growth rate‐maximizing concentrations. The FEBS Journal. 2022 Aug; 289(16): 4925-34. doi: 10.1111/febs.16401. DOI: https://doi.org/10.1111/febs.16401

Li M, Xia Q, Zhang H, Zhang R, Yang J. Metabolic engineering of different microbial hosts for lycopene production. Journal of Agricultural and Food Chemistry. 2020 Nov; 68(48): 14104-22. doi: 10.1021/acs.jafc.0c06020. DOI: https://doi.org/10.1021/acs.jafc.0c06020

Ren J, Shen J, Thai TD, Kim MG, Lee SH, Lim W et al., Evaluation of Various Escherichia coli Strains for Enhanced Lycopene Production. Journal of Microbiology and Biotechnology. 2023 Jul; 33(7): 973-9. doi: 10.4014/jmb.2302.02003. DOI: https://doi.org/10.4014/jmb.2302.02003

Downloads

Published

2023-12-31
CITATION
DOI: 10.54393/pbmj.v6i12.995
Published: 2023-12-31

How to Cite

Perveen, I., Abbas, N., Bukhari, B., Saleem, Y., Mazhar, S., Nawaz, S., Syed, Q., Imam Abidi, S. H., Riaz, S., & Akram, F. (2023). Bioengineering of the Optimized Biosynthesis of Commercially Vital Carotenoids- Techno-Advanced Applications : Biosynthesis of Commercially Vital Carotenoids . Pakistan BioMedical Journal, 6(12), 19–31. https://doi.org/10.54393/pbmj.v6i12.995

Issue

Section

Review Article

Plaudit